An Efficient Tree-Based Group Key Agreement Using Bilinear Map

  • Sangwon Lee
  • Yongdae Kim
  • Kwangjo Kim
  • Dae-Hyun Ryu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2846)


Secure and reliable group communication is an increasingly active research area by growing popularity in group-oriented and collaborative application. One of the important challenges is to design secure and efficient group key management. While centralized management is often appropriate for key distribution in large multicast-style groups, many collaborative group settings require distributed key agreement. The communication and computation cost is one of important factors in the group key management for Dynamic Peer Group. In this paper, we extend TGDH (Tree-based Group Diffie-Hellman) protocol to improve the computational efficiency by utilizing pairing-based cryptography. The resulting protocol reduces computational cost of TGDH protocol without degrading the communication complexity.


Group key agreement TGDH Bilinear Diffie-Hellman Bilinear map Pairings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Riyami, S., Paterson, K.: Authenticated three party key agreement protocols from pairings. Cryptology ePrint Archive, Report 2002/035, Available at
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001), CrossRefGoogle Scholar
  3. 3.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 354. Springer, Heidelberg (2002), Available at CrossRefGoogle Scholar
  4. 4.
    Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: Issues and architectures. RFC 2627 (June 1999)Google Scholar
  5. 5.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Joux, A.: The Weil and Tate Pairings as building blocks for public key cryptosystems. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 20–32. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kim, Y., Perrig, A., Tsudik, G.: Communication-Efficient Group Key Agreement. In: IFIP SEC 2001 (June 2001)Google Scholar
  9. 9.
    Kim, Y., Perrig, A., Tsudik, G.: Tree-based Group Diffie-Hellman Protocol. ACMCCS 2000 (2000)Google Scholar
  10. 10.
    Perrig, A., Song, D., Tyger, J.D.: ELK, a New Protocol for Efficient Large Group Key Distribution. In: 2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA (May 2001)Google Scholar
  11. 11.
    Smart, N.P.: An identity based authenticated key agreement protocol based on the weil pairing. Election. Lett. 38(13), 630–632 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Zhang, F., Liu, S., Kim, K.: ID-Based One Round Authenticated Tripartite Key Agreement Protocol with Pairings (2002), Available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sangwon Lee
    • 1
  • Yongdae Kim
    • 2
  • Kwangjo Kim
    • 1
  • Dae-Hyun Ryu
    • 3
  1. 1.Information and Communications University (ICU)DaejeonKorea
  2. 2.University of Minnesota – Twin citiesMinneapolisUSA
  3. 3.Hansei UniversitySeoulKorea

Personalised recommendations