Advertisement

Quality of Service Routing

  • P. Van Mieghem
  • F. A. Kuipers
  • T. Korkmaz
  • M. Krunz
  • M. Curado
  • E. Monteiro
  • X. Masip-Bruin
  • J. Solé-Pareta
  • S. Sánchez-López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2856)

Abstract

Constraint-based routing is an invaluable part of a full- fledged Quality of Service architecture. Unfortunately, QoS routing with multiple additive constraints is known to be a NP-complete problem. Hence, accurate constraint-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The need for such algorithms has resulted in the proposal of numerous heuristics and a few exact solutions.

This chapter presents a thorough, concise, and fair evaluation of the most important multi-constrained path selection algorithms known today. A performance evaluation of these algorithms is presented based on a complexity analysis and simulation results. Besides the routing algorithm, dynamic aspects of QoS routing are discussed: how to cope with incomplete or inaccurate topology information and (in)stability issues.

Keywords

Short Path Path Selection Link Weight IEEE INFOCOM Feasible Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrew, L.H., Kusuma, A.A.N.: Generalized analysis of a qos-aware routing algorithm. In: Proc. of IEEE GLOBECOM 1998, Piscataway, NJ, USA, vol. 1, pp. 1–6 (1998)Google Scholar
  2. 2.
    Anjali, T., Scoglio, C., de Oliveira, J., Chen, L.C., Akyldiz, I.F., Smith, J.A., Uhl, G., Sciuto, A.: A new path selection algorithm for MPLS networks based on available bandwidth estimation. In: Stiller, B., Smirnow, M., Karsten, M., Reichl, P. (eds.) QofIS 2002 and ICQT 2002. LNCS, vol. 2511, pp. 205–214. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Apostolopoulos, G., Guerin, R., Kamat, S., Tripathi, S.K.: Quality of service based routing: a performance perspective. In: Proc. of ACM SIGCOMM 1998, Vancouver, British Columbia, Canada, August/September 1998, pp. 17–28 (1998)Google Scholar
  4. 4.
    Apostolopoulos, G., Guerin, R., Kamat, S., Tripathi, S.K.: Server based qos routing. In: Proc. of IEEE GLOBECOM 1999 (1999)Google Scholar
  5. 5.
    Apostolopoulos, G., Williams, D., Kamat, S., Guerin, R., Orda, A., Przygienda, T.: QoS routing mechanisms and OSPF extensions. RFC 2676 (August 1999)Google Scholar
  6. 6.
    Apostolopoulos, G., Guerin, R., Kamat, S., Tripathi, S.: Improving qos routing performance under inaccurate link state information. In: Proc. of the 16th International Teletraffic Congress (ITC 16), Edinburgh, United Kingdom, June 7-11 (1999)Google Scholar
  7. 7.
    The, A.T.M.: Forum, Private network-to-network interface specification version 1.1 (PNNI 1.1), af-pnni-0055.002 (April 2002)Google Scholar
  8. 8.
    Basturk, E., Stirpe, P.: A hybrid spanning tree algorithm for efficient topology distribution in PNNI. In: Proc. of the 1st IEEE International Conference on ATM (ICATM 1998), pp. 385–394 (1998)Google Scholar
  9. 9.
    Bellur, B., Ogier, R.G.: A reliable, efficient topology broadcast protocol for dynamic networks. In: IEEE INFOCOM 1999, vol. 1, pp. 178–186 (1999)Google Scholar
  10. 10.
    Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An architecture for differentiated services. RFC 2475 (December 1998)Google Scholar
  11. 11.
    Braden, R., Clark, D., Shenker, S.: Integrated services in the internet architecture: an overview. RFC 1633 (June 1994)Google Scholar
  12. 12.
    Chen, S., Nahrstedt, K.: On finding multi-constrained paths. In: Proc. of ICC 1998, New York, pp. 874–879 (1998)Google Scholar
  13. 13.
    Chen, S., Nahrstedt, K.: Distributed qos routing with imprecise state information. In: Proc. of 7th IEEE International Conference of Computer, Communications and Networks, Lafayette, LA, October 1998, pp. 614–621 (1998)Google Scholar
  14. 14.
    Chen, T.M., Oh, T.H.: Reliable services in MPLS. IEEE Communications Magazine, 58–62 (1999)Google Scholar
  15. 15.
    Cheung, R.K.: Iterative methods for dynamic stochastic shortest path problems. Naval Research Logistics (45), 769–789 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Curado, M., Reis, O., Brito, J., Quadros, G., Monteiro, E.: Stability and scalability issues in hop-by-hop class-based routing. In: Ajmone Marsan, M., Listanti, G.C.M., Roveri, A. (eds.) QoS-IP 2003. LNCS, vol. 2601, pp. 103–116. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Chong, E.I., Maddila, S., Morley, S.: On finding single-source single-destination k shortest paths. J. Computing and Information, special issue ICCI 1995, 40-47 (1995)Google Scholar
  18. 18.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (2000)Google Scholar
  19. 19.
    Dalal, Y.K., Metcalfe, R.M.: Reverse path forwarding of broadcast packets. Communications of the ACM (21), 1040–1048 (1978)CrossRefzbMATHGoogle Scholar
  20. 20.
    De Neve, H., Van Mieghem, P.: A multiple quality of service routing algorithm for PNNI. In: IEEE ATM workshop, Fairfax, May 26-29, pp. 324–328 (1998)Google Scholar
  21. 21.
    De Neve, H., Van Mieghem, P.: TAMCRA: a tunable accuracy multiple constraints routing algorithm. Computer Communications 23, 667–679 (2000)CrossRefGoogle Scholar
  22. 22.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik (1), 269–271 (1959)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Eiger, A., Mirchandani, P.B., Soroush, H.: Path preferences and optimal paths in probabilistic networks. Transportation Science 19(1), 75–84 (1985)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights. In: IEEE INFOCOM 2000, vol. 2, pp. 519–528 (2000)Google Scholar
  25. 25.
    Frank, H.: Shortest paths in probabilistic graphs. Oper. Res. 17, 583–599 (1969)CrossRefzbMATHGoogle Scholar
  26. 26.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  27. 27.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 1st edn. North Oxford Academic, Oxford (1983)zbMATHGoogle Scholar
  28. 28.
    Guerin, R., Orda, A.: QoS routing in networks with inaccurate information: theory and algorithms. IEEE/ACM Transactions on Networking 7(3), 350–364 (1999)CrossRefGoogle Scholar
  29. 29.
    Guerin, R., Orda, A.: Networks with advance reservations: the routing perspective. In: IEEE INFOCOM 2000, Israel, March 26-30 (2000)Google Scholar
  30. 30.
    Guo, L., Matta, I.: Search space reduction in qos routing. In: Proc. of the 19th III Int. Conference on Distributed Computing Systems, May 1999, vol. III, pp. 142–149 (1999)Google Scholar
  31. 31.
    Guo, Y., Kuipers, F.A., Van Mieghem, P.: A Link-Disjoint Paths Algorithm for Reliable QoS Routing. To appear in International Journal of Communication Systems (2003)Google Scholar
  32. 32.
    Hassin, R.: Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research 17(1), 36–42 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Henig, M.I.: The shortest path problem with two objective functions. European J. of Operational Research 25, 281–291 (1985)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Humblet, P.A., Soloway, S.R.: Topology broadcast algorithms. Computer Networks and ISDN Systems 16, 179–186 (1988/1989)CrossRefGoogle Scholar
  35. 35.
    Iwata, A., Izmailov, R., Lee, D.-S., Sengupta, B., Ramamurthy, G., Suzuki, H.: ATM routing algorithms with multiple qos requirements for multimedia internetworking. IEICE Transactions and Communications E79-B(8), 999–1006 (1996)Google Scholar
  36. 36.
    Jaffe, J.M.: Algorithms for finding paths with multiple constraints. Networks (14), 95–116 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Jia, Y., Nikolaidis, I., Gburzynski, P.: Multiple path routing in networks with inaccurate link state information. In: IEEE ICC, vol. 8, pp. 2583–2587 (2001)Google Scholar
  38. 38.
    Jianxin, W., Weiping, W., Jianer, C., Songqiao, C.: A randomized qos routing algorithm on networks with inaccurate link-state information. In: Proc. of the International Conference on Communication Technology (WCC - ICCT 2000), vol. 2, pp. 1617–1622 (2000)Google Scholar
  39. 39.
    Juttner, A., Szviatovszki, B., Mecs, I., Rajko, Z.: Lagrange relaxation based method for the qos routing problem. In: IEEE INFOCOM 2001, April 2001, vol. 2, pp. 859–868.Google Scholar
  40. 40.
    Kamburowski, J.: A note on the stochastic shortest route problem. Operations Research 33(3), 696–698 (1985)CrossRefzbMATHGoogle Scholar
  41. 41.
    Keshav, S.: An Engineering Approach to Computer Networking: ATM networks, the Internet, and the Telephone Network. Addison-Wesley, Reading (1997)Google Scholar
  42. 42.
    Khanna, A., Zinky, J.: The revised ARPANET routing metric. In: SIGCOMM 1989 (1989)Google Scholar
  43. 43.
    Kim, S., Lee, M.: Server based qos routing with implicit network state updates. In: IEEE GLOBECOM 2001, San Antonio, Texas, November 2001, vol. 4, pp. 2182–2187 (2001)Google Scholar
  44. 44.
    Kodialam, M., Lakshman, T.V.: Dynamic routing of bandwidth guaranteed tunnels with restoration. In: IEEE INFOCOM 2000, pp. 902–911 (2000)Google Scholar
  45. 45.
    Korkmaz, T., Krunz, M.: Source-oriented topology aggregation with multiple qos parameters in hierarchical networks. The ACM Transactions on Modeling and Computer Simulation (TOMACS) 10(4), 295–325 (2000)CrossRefGoogle Scholar
  46. 46.
    Korkmaz, T., Krunz, M.: Hybrid flooding and tree-based broadcasting for reliable and efficient link-state dissemination. In: IEEE GLOBECOM 2002 Conference - High-Speed Networks Symposium (November 2002)Google Scholar
  47. 47.
    Korkmaz, T., Krunz, M.: Bandwidth-delay constrained path selection under inaccurate state information. To appear in IEEE/ACM Transactions on Networking (2003)Google Scholar
  48. 48.
    Korkmaz, T., Krunz, M.: A randomized algorithm for finding a path subject to multiple qos requirements. Computer Networks 36, 251–268 (2001)CrossRefGoogle Scholar
  49. 49.
    Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: IEEE INFOCOM (2001)Google Scholar
  50. 50.
    Kuipers, F.A., Van Mieghem, P.: QoS routing: average complexity and hopcount in m dimensions. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) QofIS 2001. LNCS, vol. 2156, pp. 110–126. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  51. 51.
    Kuipers, F.A., Van Mieghem, P.: MAMCRA: a constrained-based multicast routing algorithm. Computer Communications 25/8, 801–810 (2002)Google Scholar
  52. 52.
    Kuipers, F.A., Van Mieghem, P.: The impact of correlated link weights on qos routing. In: IEEE INFOCOM, San Francisco, USA (April 2003)Google Scholar
  53. 53.
    Kuipers, F.A., Van Mieghem, P.: Bi-directional search in qos routing. In: Karlsson, G., Smirnov, M. (eds.) QofIS 2003. LNCS, vol. 2811, pp. 102–111. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  54. 54.
    Lawler, E.L.: Combinatorial Optimization: networks and matroids. Holt, Rinehart and Winston, NewYork (1976)zbMATHGoogle Scholar
  55. 55.
    Lee, W.C., Hluchyi, M.G., Humblet, P.A.: Routing subject to quality of service constraints in integrated communication networks. IEEE Network, 46–55 (July/August 1995)Google Scholar
  56. 56.
    Lekovic, B., Van Mieghem, P.: Link state update policies for quality of service routing. In: IEEE Eighth Symposium on Communications and Vehicular Technology in the Benelux (SCVT 2001), Delft, The Netherlands, October 18, pp. 123–128 (2001)Google Scholar
  57. 57.
    Liu, G., Ramakrishnan, K.G.: A*Prune: an algorithm for finding K shortest paths subject to multiple constraints. In: IEEE INFOCOM (2001)Google Scholar
  58. 58.
    Loui, R.P.: Optimal paths in graphs with stochastic or multidimensional weights. Communications of ACM 26(9), 670–676 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Lorenz, D.H., Orda, A.: QoS routing in networks with uncertain parameters. IEEE/ACM Transactions on Networking 6(6), 768–778 (1998)CrossRefGoogle Scholar
  60. 60.
    Ma, Q., Steenkiste, P.: Quality-of-service routing with performance guarantees. In: Proc. of 4th Int. IFIP Workshop on QoS (May 1997)Google Scholar
  61. 61.
    Ma, Q., Steenkiste, P.: Supporting dynamic inter-class resource sharing: a multiclass qos routing algorithm. IEEE INFOCOM (1999)Google Scholar
  62. 62.
    Ma, Z., Zhang, P., Kantola, R.: “Influence of link state updating on the performance and cost of qos routing in an intranet. In: 2001 IEEE Workshop on High Performance Switching and Routing (HPSR 2001), Dallas, Texas, USA, May 29-31 (2001)Google Scholar
  63. 63.
    Masip-Bruin, X., Sánchez-López, S., Solé-Pareta, J., Domingo-Pascual, J.: A qos routing mechanism for reducing inaccuracy effects. In: Ajmone Marsan, M., Listanti, G.C.M., Roveri, A. (eds.) QoS-IP 2003. LNCS, vol. 2601, pp. 90–102. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  64. 64.
    Masip-Bruin, X., Sánchez-López, S., Solé-Pareta, J., Domingo-Pascual, J.: QoS routing algorithms under inaccurate routing information for bandwidth constrained applications. In: Proceedings of International Communications Conference, IEEE ICC 2003, Anchorage, Alaska (May 2003)Google Scholar
  65. 65.
    Miller-Hooks, E.D., Mahmassani, H.S.: Least expected time paths in stochastic, time-varying transportation networks. Transportation Science 34(2), 198–215 (2000)CrossRefzbMATHGoogle Scholar
  66. 66.
    Mirchandani, P.B.: Shortest distance and reliability of probabilistic networks. Comput. & Ops. Res. 3, 347–355 (1976)CrossRefGoogle Scholar
  67. 67.
    Mirchandani, P.B., Soroush, H.: Optimal paths in probabilistic networks: a case with temporal preferences. Comput. and Operations Research 12(4), 365–381 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  68. 68.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  69. 69.
    Murthy, I., Sarkar, S.: Exact algorithms for the stochastic shortest path problem with a decreasing deadline utility function. European Journal of Operational Research 103, 209–229 (1997)CrossRefzbMATHGoogle Scholar
  70. 70.
    Murthy, I., Sarkar, S.: Stochastic shortest path problems with piecewise-linear concave utility functions. Management Science 44(11), S125—S136 (1998)CrossRefGoogle Scholar
  71. 71.
    Nahrstedt, K., Chen, S.: Coexistence of qos and best effort flows - routing and scheduling. In: Proc. of 10th IEEE Tyrrhenian International Workshop on Digital Communications: Multimedia Communications, Ischia, Italy (September 1998)Google Scholar
  72. 72.
    Nelakuditi, S., Zhang, Z., Tsang, R.P.: Adaptive proportional routing: a localized qos routing approach. In: IEEE INFOCOM 2000, pp. 1566-1575 (2000)Google Scholar
  73. 73.
    Oliveira, M., Brito, J., Melo, B., Quadros, G., Monteiro, E.: Quality of service routing in the differentiated services framework. In: Proc. of SPIE’s International Symposium on Voice, Video, and Data Communications (Internet III: Quality of Service and Future Directions), Boston, Massachusetts, USA, November 5-8 (2000)Google Scholar
  74. 74.
    Orda, A.: Routing with end-to-end qos guarantees in broadband networks. IEEE/ACM Transactions on Networking 7(3), 365–374 (1999)CrossRefGoogle Scholar
  75. 75.
    Orda, A., Sprintson, A.: QoS routing: the precomputation perspective. In: IEEE INFOCOM 2000, pp. 128-136 (2000)Google Scholar
  76. 76.
    Peyravian, M., Kshemkalyani, A.D.: Network path caching: issues, algorithms and a simulation study. Performance Evaluation 20(8), 605–614 (1997)Google Scholar
  77. 77.
    Polychronopoulos, G.H., Tsitsiklis, J.N.: Stochastic shortest path problems with recourse. Operations Research Letters 10, 329–334 (1991)CrossRefMathSciNetGoogle Scholar
  78. 78.
    Reeves, D.S., Salama, H.F.: A distributed algorithm for delay-constrained unicast routing. IEEE/ACM Transactions on Networking 8(2), 239–250 (2000)CrossRefGoogle Scholar
  79. 79.
    Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol label switching architecture. RFC 3031 (January 2001)Google Scholar
  80. 80.
    Shaikh, A., Rexford, J., Shin, K.: Load-sensitive routing of long-lived IP flows. In: ACM SIGCOMM 1999 (1999)Google Scholar
  81. 81.
    Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE JSAC 15(3), 332–345 (1997)Google Scholar
  82. 82.
    Sen, S., Pillai, R., Joshi, S., Rathi, A.K.: A mean-variance model for route guidance in advanced traveler information systems. Transportation Science 35(1), 37–49 (2001)CrossRefzbMATHGoogle Scholar
  83. 83.
    Schrijver, A.: Combinatorial Optimization, vol. A-C. Springer, Berlin (2003)zbMATHGoogle Scholar
  84. 84.
    Sigal, C.E., Pritsker, A.A.B., Solberg, J.J.: Stochastic shortest route problem. Operations Research 28(5), 1122–1129 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  85. 85.
    Sivakumar, R.A., Batta, R.: The variance-constrained shortest path problem. Transportation Science 28(4), 309–316 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  86. 86.
    Taft-Plotkin, N., Bellur, B., Ogier, R.: Quality-of-service routing using maximally disjoint paths. In: Proc. of the Seventh International Workshop on Quality of Service (IWQoS 1999), London, England, May/June 1999, pp. 119-128 (1999)Google Scholar
  87. 87.
    Van Mieghem, P., De Neve, H., Kuipers, F.A.: Hop-by-hop quality of service routing. Computer Networks 37(3-4), 407–423 (2001)CrossRefGoogle Scholar
  88. 88.
    Van Mieghem, P.: Paths in the simple random graph and the Waxman graph. Probability in the Engineering and Informational Sciences (PEIS) 15, 535–555 (2001)zbMATHGoogle Scholar
  89. 89.
    Van Mieghem, P.: Topology information condensation in hierarchical networks. Computer Networks 31(20), 2115–2137 (1999)CrossRefGoogle Scholar
  90. 90.
    Van Mieghem, P., De Neve, H.: Aspects of quality of service routing. In: Proc. of SPIE 1998, Boston (USA), 3529A-05, November 1-6 (1998)Google Scholar
  91. 91.
    Van Mieghem, P.: Estimation of an optimal PNNI topology. In: IEEE ATM Workshop, pp. 570–577 (1997)Google Scholar
  92. 92.
    Vutukury, S., Garcia-Luna-Aceves, J.J.: A simple approximation to minimumdelay routing. In: ACM SIGCOMM 1999 (1999)Google Scholar
  93. 93.
    Wang, B., Hou, J.C.: Multicast routing and its qos extension: problems, algorithms, and protocols. IEEE Network 14(1), 22–36 (2000)CrossRefGoogle Scholar
  94. 94.
    Wang, Z., Crowcroft, J.: Shortest path first with emergency exits. In: SIGCOMM 1990, Philadelphia, USA (September 1990)Google Scholar
  95. 95.
    Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia applications. IEEE JSAC 14(7), 1228–1234 (1996)Google Scholar
  96. 96.
    Wang, J., Nahrstedt, K.: Hop-by-hop routing algorithms for premium-class traffic in diffserv networks. In: IEEE INFOCOM (2002)Google Scholar
  97. 97.
    Waxman, B.M.: Routing of multipoint connections. IEEE JSAC 6(9), 1617–1622 (1998)Google Scholar
  98. 98.
    Xiao, X., Ni, L.M.: Internet qos: a big picture. IEEE Network 13(2), 8–18 (1999)CrossRefGoogle Scholar
  99. 99.
    Yuan, X.: Heuristic algorithms for multiconstrained quality-of-service routing. IEEE/ACM Transactions on Networking 10(2) (April 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. Van Mieghem
    • 1
  • F. A. Kuipers
    • 1
  • T. Korkmaz
    • 2
  • M. Krunz
    • 3
  • M. Curado
    • 4
  • E. Monteiro
    • 4
  • X. Masip-Bruin
    • 5
  • J. Solé-Pareta
    • 5
  • S. Sánchez-López
    • 5
  1. 1.Faculty of Electrical EngineeringMathematics and Computer Science, Delft University of TechnologyDelftThe Netherlands
  2. 2.Department of Computer ScienceThe University of Texas at San AntonioSan AntonioUSA
  3. 3.Department of Electrical & Computer EngineeringUniversity of ArizonaTucsonUSA
  4. 4.Laboratory of Communications and Telematics, CISUC/DEIUniversity of CoimbraCoimbraPortugal
  5. 5.Department of Computer ArchitectureTechnical University of CataloniaBarcelona, CatalunyaSpain

Personalised recommendations