Conditional Expectation and the Approximation of Labelled Markov Processes

  • Vincent Danos
  • Josée Desharnais
  • Prakash Panangaden
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)

Abstract

We develop a new notion of approximation of labelled Markov processes based on the use of conditional expectations. The key idea is to approximate a system by a coarse-graining of the state space and using averages of the transition probabilities. This is unlike any of the previous notions where the approximants are simulated by the process that they approximate. The approximations of the present paper are customizable, more accurate and stay within the world of LMPs. The use of averages and expectations may well also make the approximations more robust. We introduce a novel condition – called “granularity” – which leads to unique conditional expectations and which turns out to be a key concept despite its simplicity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arveson, W.: An Invitation to C ∗-Algebra. Springer, Heidelberg (1976)Google Scholar
  2. 2.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953)MathSciNetGoogle Scholar
  3. 3.
    Danos, V., Desharnais, J.: Note sur les chaînes de Markov étiquetées. Unpublished, in french (2002)Google Scholar
  4. 4.
    Danos, V., Desharnais, J.: A fixpoint logic for labeled Markov Processes. In: Esik, Z., Walukiewicz, I. (eds.) Proceedings of an international Workshop FICS 2003 (Fixed Points in Computer Science), Warsaw (2003)Google Scholar
  5. 5.
    Danos, V., Desharnais, J.: Labeled Markov Processes: Stronger and faster approximations. In: Proceedings of the 18th Symposium on Logic in Computer Science. IEEE, Los Alamitos (2003)Google Scholar
  6. 6.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Information and Computation 179(2), 163–193 (2002), Available from http://www.ift.ulaval.ca/~jodesharnais MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled Markov processes. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 258. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating continuous Markov processes. In: Proceedings of the 15th Annual IEEE Symposium On Logic In Computer Science, Santa Barbara, Californie, USA, pp. 95–106 (2000)Google Scholar
  9. 9.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labeled Markov processes. In: Information and Computation (2003) (to appear), Available from http://www.ift.ulaval.ca/~jodesharnais
  10. 10.
    Edalat, A.: Domain of computation of a random field in statistical physics. In: Hankin, C., Mackie, I., Nagarajan, R. (eds.) Theory and Formal Methods 1994: Proceedings of the second Imperial College Department of Computing Workshop on Theory and Formal Methods, pp. 11–14. IC Press (1994)Google Scholar
  11. 11.
    Edalat, A.: Domain theory and integration. Theoretical Computer Science 151, 163–193 (1995)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: Proceedings of the Fourth Annual IEEE Symposium On Logic In Computer Science, pp. 186–195 (1989)Google Scholar
  13. 13.
    Martin, K.: The measurement process in domain theory. In: International Colloquium on Automata, Languages and Programming, pp. 116–126 (2000)Google Scholar
  14. 14.
    Panangaden, P., Shanbhogue, V.: The expressive power of indeterminate dataflow primitives. Information and Computation 98(1), 99–131 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    van Breugel, F., Mislove, M., Ouaknine, J., Worrell, J.: Probabilistic simulation, domain theory and labelled Markov processes. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 200–215. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Williams, D.: Probability with Martingales. CUP, Cambridge (1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vincent Danos
    • 1
  • Josée Desharnais
    • 2
  • Prakash Panangaden
    • 3
  1. 1.Université Paris 7 & CNRS 
  2. 2.Université LavalQuébec
  3. 3.McGill UniversityMontréal

Personalised recommendations