Advertisement

Cumulative Chord Piecewise-Quartics for Length and Curve Estimation

  • Ryszard Kozera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2756)

Abstract

We discuss the problem of estimating an arbitrary regular parameterized curve and its length from an ordered sample of interpolation points in n-dimensional Euclidean space. The corresponding tabular parameters are assumed to be unknown. In this paper the convergence rates for estimating both curve and its length with cumulative chord piecewise-quartics are established for different types of unparameterized data including ε-uniform samplings. The latter extends previous results on cumulative chord piecewise-quadratics and piecewise-cubics. The numerical experiments carried out for planar and space curves confirm sharpness of the derived asymptotics. A high quality approximation property of piecewise-quartic cumulative chords is also experimentally verified on sporadic data. Our results may be of interest in computer vision (e.g. in edge and range image segmentation or in tracking), digital image processing, computer graphics, approximation and complexity theory or digital and computational geometry.

Keywords

shape length curve interpolation image analysis and features 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsky, B.A., DeRose, T.D.: Geometric Continuity of Parametric Curves: Three Equivalent Characterizations. IEEE. Comp. Graph. Appl. 9(6), 60–68 (1989)CrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Imiya, A., Klette, R. (eds.): Digital and Image Geometry. LNCS, vol. 2243. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  3. 3.
    Bézier, P.E.: Numerical Control: Mathematics and Applications. John Wiley, New York (1972)zbMATHGoogle Scholar
  4. 4.
    Boehm, W., Farin, G., Kahmann, J.: A Survey of Curve and Surface Methods in CAGD. Comput. Aid. Geom. Des. 1, 1–60 (1988)CrossRefGoogle Scholar
  5. 5.
    de Boor, C., Höllig, K., Sabin, M.: High Accuracy Geometric Hermite Interpolation. Comput. Aided Geom. Design 4, 269–278 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bülow, T., Klette, R.: Rubber Band Algorithm for Estimating the Length of Digitized Space-Curves. In: Sneliu, A., Villanva, V.V., Vanrell, M., Alquézar, R. (eds.) Proceedings of 15th International Conference on Pattern Recognition, Barcelona, Spain, vol. III, pp. 551–555. IEEE, Los Alamitos (2000)Google Scholar
  7. 7.
    Dorst, L., Smeulders, A.W.M.: Discrete Straight Line Segments: Parameters, Primitives and Properties. In: Melter, R., Bhattacharya, P., Rosenfeld, A. (eds.) Ser. Contemp. Maths. Amer. Math. Soc, vol. 119, pp. 45–62 (1991)Google Scholar
  8. 8.
    Epstein, M.P.: On the Influence of Parametrization in Parametric Interpolation. SIAM. J. Numer. Anal. 13(2), 261–268 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hoschek, J.: Intrinsic Parametrization for Approximation. Comput. Aid. Geom. Des. 5, 27–31 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Klette, R.: Approximation and Representation of 3D Objects. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 161–194. Springer, Singapore (1998)Google Scholar
  11. 11.
    Klette, R., Kovalevsky, V., Yip, B.: On the Length Estimation of Digital Curves. In: Latecki, L.J., Melter, R.A., Mount, D.A., Wu, A.Y. (eds.) Proceedings of SPIE Conference, Vision Geometry VIII, Denver, USA. The International Society for Optical Engineering, vol. 3811, pp. 52–63 (1999)Google Scholar
  12. 12.
    Klette, R., Yip, B.: The Length of Digital Curves. Machine Graphics and Vision 9, 673–703 (2000)Google Scholar
  13. 13.
    Klette, R., Rosenfeld, A., Sloboda, F. (eds.): Advances in Digital and Computational Geometry, pp. 161–194. Springer, Singapore (1998)zbMATHGoogle Scholar
  14. 14.
    Klingenberg, W.: A Course in Differential Geometry. Springer, Heidelberg (1978)zbMATHGoogle Scholar
  15. 15.
    Kozera, R.: Cumulative Chord Piecewise-Quartics (submitted)Google Scholar
  16. 16.
    Kozera, R., Noakes, L., Klette, R.: External versus Internal Parameterizations for Lengths of Curves with Nonuniform Samplings. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 403–418. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Kvasov, B.I.: Method of Shape-Preserving Spline Approximation. World Scientific Pub. Co, Singapore (2000)CrossRefGoogle Scholar
  18. 18.
    Lachance, M.A., Schwartz, A.J.: Four Point Parabolic Interpolation. Comput. Aided Geom. Design 8, 143–149 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lee, E.T.Y.: Corners, Cusps, and Parameterization: Variations on a Theorem of Epstein. SIAM J. Numer. Anal. 29, 553–565 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Moran, P.: Measuring the Length of a Curve. Biometrika 53(3/4), 359–364 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mørken, K., Scherer, K.: A General Framework for High-accuracy Parametric Interpolation. Maths Comput 66(217), 237–260 (1997)CrossRefGoogle Scholar
  22. 22.
    Noakes, L., Kozera, R.: More-or-Less Uniform Sampling and Lengths of Curves. Quart. Appl. Maths (in press)Google Scholar
  23. 23.
    Noakes, L., Kozera, R.: Interpolating Sporadic Data. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 613–625. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Noakes, L., Kozera, R.: Cumulative Chords and Piecewise-Quadratics. In: Proceedings of International Conference on Computer Vision and Graphics, Zakopane, Poland, vol. 2, pp. 589–595 (2002)Google Scholar
  25. 25.
    Noakes, L., Kozera, R.: Cumulative Chords, Piecewise-Quadratics and Piecewise-Cubics (submitted)Google Scholar
  26. 26.
    Noakes, L., Kozera, R., Klette, R.: Length Estimation for Curves with Different Samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 339–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Noakes, L., Kozera, R., Klette, R.: Length Estimation for Curves with ε-Uniform Sampling. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 518–526. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)Google Scholar
  29. 29.
    Rababah, A.: High Order Approximation Methods for Curves. Computer Aided Geom. Design 12, 89–102 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill, New York (1965)zbMATHGoogle Scholar
  31. 31.
    Schaback, R.: Optimal Geometric Hermite Interpolation of Curves. In: Dæhlen, M., Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 1–12. Vanderbilt University Press (1998)Google Scholar
  32. 32.
    Sederberg, T.W., Zhao, J., Zundel, A.K.: Approximate Parametrization of Algebraic Curves. In: Strasser, W., Seidel, H.P. (eds.) Theory and Practice in Geometric Modelling, pp. 33–54. Springer, Berlin (1989)Google Scholar
  33. 33.
    Sloboda, F., Zaťko, B., Stör, J.: On Approximation of Planar One-Dimensional Continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160. Springer, Singapore (1998)Google Scholar
  34. 34.
    Taubin, T.: Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation. IEEE Trans. Patt. Mach. Intell. 13(11), 1115–1138 (1991)CrossRefGoogle Scholar
  35. 35.
    Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge Uni. Press, Cambridge (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ryszard Kozera
    • 1
  1. 1.School of Computer Science and Software EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations