Advertisement

Monocentric Optical Space

  • Jan J. Koenderink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2756)

Abstract

The objective content of the visual world of a monocular, immobile observer is entirely due to “monocular cues”. These cues only partially constrain the geometry, the remaining ambiguities define a freedom of the observer to commit “mental changes of viewpoint”. Though fully idiosyncratic, such changes cannot possibly violate the optical data. We use this group of “visual congruences” (for that they must be) to deduce the geometry of monocentric visual space. Visual space is a homogeneous, flat non–Euclidean space. Homogeneity implies that the space admits of a group of isometries (the aforementioned cue ambiguities) or “free mobility of rigid configurations”. Thus visual space is the same near any one of its points. The theory has many applications, among more in the rendering of scenes at inappropriate sizes as is typical in printing.

Keywords

Visual Space Euclidean Plane Visual World Distance Ratio Logarithmic Spiral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbot, E., Flatland, A.: Flatland: A Romance of many Dimensions. orig. 1884. Dover, New York (1992)Google Scholar
  2. 2.
    Barre, A., Flocon, A.: La perspective curviligne, de l’espace visuel a l’image construite. Flammarion, Paris (1968)Google Scholar
  3. 3.
    Berkeley, B.: An Essay towards a New Theory of Vision. Orig. 1709. In: Theory of Vision and Other Writing by Bishop Berkeley, 1925. Dent and Sons, New York (1925)Google Scholar
  4. 4.
    Cayley, A.: Sixth memoir upon the quantics. Philosophical Transactions of the Royal Society London 149, 61–70 (1859)CrossRefGoogle Scholar
  5. 5.
    Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1989)Google Scholar
  6. 6.
    Forsyth, D., Ponce, J.: Computer Vision—A modern Approach. Prentice Hall, Upper Saddle River (2002)Google Scholar
  7. 7.
    Hauck, G.: Die subjektive Perspektive und die horizontalen Curvaturen des Dorischen Styls. Wittwer, Stuttgart (1875)Google Scholar
  8. 8.
    Helmholtz, H.: On the Facts underlying Geometry. Orig. 1868. In: Cohen and Elkana, pp. 39–71 (1977)Google Scholar
  9. 9.
    Hildebrand, A.: The Problem of Form in painting and sculpture. Translated by M. Meyer and R. M. Ogden. First, German edition, Das Problem der Form, 1893. Stechert, New York (1945) Google Scholar
  10. 10.
    Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen. Mathematische Annalen 43, 63–100 (1893)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Luneburg, R.K.: Mathematical analysis of binocular vision. Princeton University Press, Princeton (1947)zbMATHGoogle Scholar
  12. 12.
    Pirenne, M.H.: Optics, Painting and Photography. Cambridge University Press, Cambridge (1970)Google Scholar
  13. 13.
    Poincaré, H.: Science et la méthode. Flammarion, Paris (1908)Google Scholar
  14. 14.
    Sachs, H.: Ebene isotrope Geometrie. Friedrich Vieweg & Sohn, Braunschweig (1987)zbMATHGoogle Scholar
  15. 15.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes I. Sitzungsberichte der Akademie der Wissenschaften Wien 150, 1–43 (1941)MathSciNetGoogle Scholar
  16. 16.
    Swift, J.: Gulliver’s Travels and Other Works. Routledge (orig. 1726) (1906)Google Scholar
  17. 17.
    Yaglom, I.M.: A simple non–Euclidean geometry and its physical basis. Springer, New York (1979)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jan J. Koenderink
    • 1
  1. 1.Department of Physics & AstronomyUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations