Advertisement

Optimization and Tracking of Polygon Vertices for Shape Coding

  • Janez Zaletelj
  • Jurij F. Tasic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2756)

Abstract

The efficiency of shape coding is an important problem in low-bitrate object-based video compression. Lossy contour coding methods typically include contour approximation by polygons or splines, spatial and/or temporal prediction of vertices, and entropy coding the of prediction error. In conventional contour coding schemes, however, the coding gain in the interframe mode is typically small. This indicates that the temporal redundancy is not successfully removed. The paper addresses the issue of temporal shape decorrelation by proposing the Kalman filtering-based approach to vertex tracking and prediction. A temporal vertex association procedure is proposed effectively minimizing bit rate in each frame. The prediction error is coded using adaptive arithmetic encoding. Vertex optimization is employed to reduce the shape reconstruction error.

Keywords

Prediction Error Temporal Prediction Video Object Vertex Position Polygon Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Connell, K.J.: Object-adaptive vertex-based shape coding method. IEEE Trans. Circuits Syst. Video Technol. 7, 251–255 (1997)CrossRefGoogle Scholar
  2. 2.
    Lee, S., Cho, D., Cho, Y., Son, S., Jang, E., Shin, J.: Binary shape coding using 1-D distance values from baseline. In: Proc. ICIP, pp. I-508–511 (1997)Google Scholar
  3. 3.
    Chung, J., Lee, J., Moon, J., Kim, J.: A new vertex-based binary shape coder for high coding efficiency. Signal Processing: Image Comm. 15, 665–684 (2000)CrossRefGoogle Scholar
  4. 4.
    Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. 10, 260–268 (1961)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Katsaggelos, A.K., Kondi, L.P., Meier, F.W., Ostermann, J., Schuster, G.M.: MPEG-4 and rate-distortion-based shape-coding techniques. Proc. IEEE 86, 1126–1154 (1998)CrossRefGoogle Scholar
  6. 6.
    Witten, H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)CrossRefGoogle Scholar
  7. 7.
    Melnikov, G., Schuster, G.M., Katsaggelos, A.K.: Shape Coding Using Temporal Correlation and Joint VLC Optimization. IEEE Trans. Circ. Syst. Video Techn. 10(5), 744–754 (2000)CrossRefGoogle Scholar
  8. 8.
    Cho, S.H., Kim, R.C., Oh, S.S., Lee, S.U.: A Coding Technique for the Contours in Smoothly Perfect Eight-Connectivity Based on Two-Stage Motion Compensation. IEEE Trans. CSVT 9, 59–69 (1999)Google Scholar
  9. 9.
    Brady, N., Bossen, F.: Shape compression of moving objects using context-based arithmetic encoding. Signal Processing: Image Communication 15, 601–617 (2000)CrossRefGoogle Scholar
  10. 10.
    Kim, J.I., Bovik, A.C., Evans, B.L.: Generalized predictive binary shape coding using polygon approximation. Signal Processing: Image Communication 15, 643–663 (2000)CrossRefGoogle Scholar
  11. 11.
    Gerken, P.: Object-based analysis-synthesis coding of image sequences at very low bit rates. IEEE Trans. CSVT 4, 228–235 (1994)Google Scholar
  12. 12.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Janez Zaletelj
    • 1
  • Jurij F. Tasic
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations