Automatic Detection of Specular Reflectance in Colour Images Using the MS Diagram

  • Fernando Torres
  • Jesús Angulo
  • Francisco Ortiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2756)


In this paper we present a new method for the identification of specular reflectance in colour images. We have developed a bi-dimensional histogram which allows the exploitation of the relations between the signals of intensity and saturation of a colour image. Once the diagram has been constructed, it is possible to verify that the pixels of the specular reflectance are located in a well-defined region. The brightness is automatically identified by means of the extraction of pixels present in this region of the diagram, independently of their hue values. The effectiveness of the method in a variety of real chromatic images has been proven.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (1993)Google Scholar
  2. 2.
    Ortiz, F.: Procesamiento Morfológico de Imágenes en Color. Aplicación a la Reconstrucción Geodésica. PhD. Thesis. University of Alicante (2002)Google Scholar
  3. 3.
    Criminisi, A., Bing Kang, S., Swaminathan, R., et al.: Extracting Layers and Analyzing their Specular Properties Using Epipolar-Plane-Imaging Analysis. Tech. Report MSR-TR-2002- 19. Columbia University (2002)Google Scholar
  4. 4.
    Lin, S., Li, Y., Bing Kang, S., et al.: Diffuse-Specular Separation and Depth Recovery from Image Sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 210–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Raghed, H., Hancock, E.: Separating Lambertian and Specular Reflectance Components using Iterated Conditional Modes. In: Proc. of The British Machine Vision Conference (BMVC), University of Manchester (2001)Google Scholar
  6. 6.
    Bajcsy, R., et al.: Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation. IJCV 17(2), 241–272 (1996)CrossRefGoogle Scholar
  7. 7.
    Sangwine, S., Horne, R.: The Colour Image Processing Handbook. Chapman and Hall, Cambridge (1998)Google Scholar
  8. 8.
    Plataniotis, K., Venetsanopoulos, A.: Color Image Processing and Applications. Springer, Heidelberg (2000)Google Scholar
  9. 9.
    Fairchild, M.: Color Appearance Models. Addison-Wesley, Reading (1998)Google Scholar
  10. 10.
    Levkowitz, H., Herman, G.T.: GLHS: A generalized lightness, hue and saturation color model. CVGIP 55(4), 271–285 (1993)Google Scholar
  11. 11.
    Serra, J.: Espaces couleur et traitement d’images. Tech. Report N-34/02/MM. Centre de Morphologie Mathématique. École des Mines de Paris (2002)Google Scholar
  12. 12.
    Risson, V.: Application de la Morphologie Mathématique à l’Analyse des Conditions d’Éclaraige des Images Couleur. PhD. Thesis. CMM. ENSMP (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Fernando Torres
    • 1
  • Jesús Angulo
    • 2
  • Francisco Ortiz
    • 1
  1. 1.Automatics, Robotics and Computer Vision Group, Dept. Physics, Systems Engineering and Signal TheoryUniversity of AlicanteAlicanteSpain
  2. 2.Center of Mathematical Morphology, Ecole des Mines de ParisFontainebleauFrance

Personalised recommendations