Utilizing Temporal Information in Topic Detection and Tracking

  • Juha Makkonen
  • Helena Ahonen-Myka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2769)


The harnessing of time-related information from text for the use of information retrieval requires a leap from the surface forms of the expressions to a formalized time-axis. Often the expressions are used to form chronological sequences of events. However, we want to be able to determine the temporal similarity, i.e., the overlap of temporal references of two documents and use this similarity in Topic Detection and Tracking, for example. We present a methodology for extraction of temporal expressions and a scheme of comparing the temporal evidence of the news documents. We also examine the behavior of the temporal expressions and run experiments on English News corpus.


Temporal Information Temporal Expression Reference Time Utterance Time Topic Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Setzer, A.: Temporal Information in Newswire Articles: An Annotation Scheme and Corpus Study. PhD thesis, University of Sheffield, UK (2001)Google Scholar
  2. 2.
    Allan, J. (ed.): Topic Detection and Tracking – Event-based Information Organization. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  3. 3.
    Allan, J., Carbonell, J., Doddington, G., Yamron, J., Yang, Y.: Topic detection and tracking pilot study: Final report. In: Proc. DARPA Broadcast News Transcription and Understanding Workshop (1998)Google Scholar
  4. 4.
    Tapanainen, P., Järvinen, T.: A non-projective dependency parser. In: Proc. 5th Conference on Applied Natural Language Processing (1997) Google Scholar
  5. 5.
    Goralwalla, I.A., Leontiev, Y., Özsu, M.T., Szafron, D., Combi, C.: Temporal granularity: Completing the puzzle. Journal of Intelligent Information Systems 16, 41–63 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Mani, I., Wilson, G.: Robust temporal processing of news. In: Proc. Association for Computational Linguistics (ACL-2000), pp. 69–76 (2000)Google Scholar
  7. 7.
    Schilder, F., Habel, C.: From temporal expressions to temporal information: Semantic tagging of news messages. In: Proc. ACL-2001 Workshop on Temporal and Spatial Information Processing, pp. 65–72 (2001)Google Scholar
  8. 8.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of ACM 26, 832–843 (1983)zbMATHCrossRefGoogle Scholar
  9. 9.
    Setzer, A., Gaizauskas, R.: Building a temporally annotated corpus for information extraction. In: Proc. 2nd Intl. Conference on Language Resources and Evaluation (LREC) workshop: Information Extraction Meets Corpus Linguistics (2000)Google Scholar
  10. 10.
    Wiebe, J., O’Hara, T., McKeever, K., Öhrström-Sandgren, T.: An empirical approach to temporal reference resolution. Journal of Artificial Intelligence Research 9, 247–293 (1998)zbMATHGoogle Scholar
  11. 11.
    Smith, D.A.: Detecting events with date and place information in unstructured text. In: Proc. 2nd Joint Conference on Digital Libraries (JDCL 2002), pp. 191– 196 (2002)Google Scholar
  12. 12.
    Koen, D.B., Bender, W.: Time frames: Temporal augmentation of the news. IBM systems journal 39, 597–616 (2000)CrossRefGoogle Scholar
  13. 13.
    Makkonen, J., Ahonen-Myka, H., Salmenkivi, M.: Applying semantic classes in event detection and tracking. In: Proc. International Conference on Natural Language Processing (ICON 2002), Mumbai, India (2002)Google Scholar
  14. 14.
    Allan, J., Gupta, R., Khandelal, V.: Temporal summaries of news topics. In: Proc. ACM SIGIR, pp. 10–18 (2001)Google Scholar
  15. 15.
    Ning, P., Wang, X.S., Jajodia, S.: An algebraic representation of calendars. Annals of Mathematics and Artificial Intelligence 36, 5–38 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Allen, J.: Natural Language Understanding, 2nd edn. The Benjamin/Cummings Publishing Company (1995)Google Scholar
  17. 17.
    Galton, A.: Time and change for AI. In: Gabbay, M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming. Epistemic and Temporal Reasoning, vol. 4, pp. 175–240. Oxford University Press, Oxford (1995)Google Scholar
  18. 18.
    Krippendorff, K.: On the reliability of unitizing continuous data. In: Marsden, P.V. (ed.) Sociological Methodology, pp. 47–76. Blackwell, Malden (1995)Google Scholar
  19. 19.
    Cieri, C., Strassel, S., Graff, D., Martey, N., Rennert, K., Liberman, M.: Corpora for topic detection and tracking. In: Allan, J. (ed.) Topic Detection and Tracking – Event-based Information Organization, pp. 33–66. Kluwer Academic Publisher, Dordrecht (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Juha Makkonen
    • 1
  • Helena Ahonen-Myka
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations