Advertisement

Learning in the Broker Agent

  • Xiaocheng Luan
  • Yun Peng
  • Timothy Finin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2564)

Abstract

Service matching is one of the crucial elements in the success of large, open agent systems. While finding "perfect" matches is always desirable, it is not always possible. The capabilities of an agent may change over time; some agents may be unwilling to, or unable to communicate their capabilities at the right level of details. The solution we propose is to have the broker agent dynamically refine the agent’s capability model and to conduct performance rating. The agent capability model will be updated using the information from the consumer agent feedback, capability querying, etc. The update process is based on a concept of "dynamic weight sum system", as well as based on the local distribution of the agent services. We assume that the agents in the system share a common domain ontology that will be represented in DAML+OIL, and the agent capabilities will be described using DAML-S.

Keywords

Service Provider Weight Function Agent Service Weight Sequence Service Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arens, Y., Chee, C., Hsu, C., In, H., Knoblock, C.A.: Query Processing in an Information MediatorGoogle Scholar
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)Google Scholar
  3. 3.
    Byrne, C., Edwards, P.: Refinement in Agent Groups. In: Weiss, G., Sen, S. (eds.) IJCAI-WS 1995. LNCS(LNAI), vol. 1042, pp. 22–39. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Chen, H., Joshi, A., Finin, T.: Dynamic Service Discovery for Mobile Computing: Intelligent Agents Meet Jini in the Aether. The Baltzer Science Journal on Cluster Computing 3(2) (March 2001)Google Scholar
  5. 5.
    Cohen, W., Borgida, A., Hirsh, H.: Computing Least Common Subsumers in Description Logics. In: Proceedings of the National Conference on Artificial Intelligence - AAAI 1992, pp. 754–760 (1992)Google Scholar
  6. 6.
    DAML specification (October 2000), http://www.daml.org/
  7. 7.
  8. 8.
  9. 9.
    DAML-S: A DAML for Web Services, White paper, SRI, http://www.ai.sri.com/daml/services/daml-s.pdf
  10. 10.
    Decker, K., Sycara, K., Williamson, M.: Modeling Information Agents: Advertisements, Organizational Roles, and Dynamic Behavior. In: Working Notes of the AAAI 1996 workshop on Agent Modeling, AAAI Report WS-96-02 (1996)Google Scholar
  11. 11.
    Decker, K., Williamson, M., Sycara, K.: Matchmaking and Brokering (1996); Downloaded from the site of cs.cmu.edu
  12. 12.
    Dellarocas, C.: Immunizing online reputation reporting systems against unfair ratings and discriminatory behavior. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, Minneapolis, MN, October 17-20 (2000)Google Scholar
  13. 13.
    Berkey, D.D., Blanchard, P.: Calculus, 3rd edn. Instructor’s Preliminary Edition. Saunders College Publishing, Philadelphia (1992)Google Scholar
  14. 14.
    FIPA 1997, Specification Part 1, Agent Management (1997)Google Scholar
  15. 15.
    FIPA 1997, Specification Part 2, Agent Communication Language (1997)Google Scholar
  16. 16.
    Friedrich, H., Kaiser, M., Rogalla, O., Dillmann, R.: Learning and Communication in Multi Agent Systems. In: Weiss, G. (ed.) ECAI 1996 Workshops. LNCS(LNAI), vol. 1221, pp. 259–275. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Genesereth, M.R., Singh, N.P.: A Knowledge Sharing Approach to Software Interoperation. Stanford Logic Group Report Logic-93-12Google Scholar
  18. 18.
    Gruber, T.R.: The Role of Common Ontology in Achieving Sharable, Reusable Knowledge Bases. In: Allen, J.A., Fikes, R., Sandewall, E. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference. Morgan KaufMann, San Mateo (1991)Google Scholar
  19. 19.
    Gruber, T.R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  20. 20.
    Labrou, Y., Finin, T., Grosof, B., Peng, Y.: Agent Communication Languages. In: Bradshaw, J. (ed.) Handbook of Agent Technology. MIT/AAAI Press (2001)Google Scholar
  21. 21.
    Lambrix, P., Maleki, J.: Learning Composite Concepts in Description Logics: A First Step. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS(LNAI), vol. 1079, pp. 68–77. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    McIlraith, S., Son, T.C., Zeng, H.: Semantic Web Services, IEEE Intelligent Systems. Special Issue on the Semantic Web (2001) (to appear)Google Scholar
  23. 23.
    Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning, An Artificial Intelligence Approach. Tioga Publishing CompanyGoogle Scholar
  24. 24.
    Mui, L., Szolovitz, P., Wang, C.: Sanctioning: Applications in Restaurant Recommendations based on Reputation. In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal (May 2001)Google Scholar
  25. 25.
    Mui, L., Mohtashemi, M., Ang, C.: A probabilistic Rating Framework for Pervasive Computing Environments. In: The Oxygen Workshop (2001)Google Scholar
  26. 26.
    Collaborative Brokering. Technical report, MCC, INSL-093-97. (abstract)Google Scholar
  27. 27.
    Nodine, M., Perry, B.: Experience with the InfoSleuth Agent Architecture. In: Proceedings of AAAI 1998 Workshop on Software Tools for Developing Agents (1998) (to appear)Google Scholar
  28. 28.
    Nwana, H.S.: Software Agents: An Overview. Knowledge Engineering Review 11(3), 1–40 (1996)CrossRefGoogle Scholar
  29. 29.
    Peng, Y., Ivezic, N., Zou, Y., Luan, X.: Semantic Resolution for E-Commerce. In: Proceedings of the First Workshop on Radical Agent Concepts, Greenbelt, Maryland (September 2001) (to appear)Google Scholar
  30. 30.
    Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers C-29, 1104–1113 (1980)CrossRefGoogle Scholar
  31. 31.
    Singh, N.P.: A Common Lisp API and Facilitator for ABSI, version 2.0.3 Stanford Logic Group Report Logic-93-4Google Scholar
  32. 32.
    Sycara, K., Lu, J., Klusch, M.: Interoperability among Heterogeneous Software Agents on the Internet. CMU-RI-TR-98-22Google Scholar
  33. 33.
    Weinstein, P., Birmingham, W.P.: Comparing concepts in differentiated ontologies. In: Proceedings of the Twelfth Workshop on Knowledge Acquisition, Modeling and Management (KAW 1999)Google Scholar
  34. 34.
    Wickler, G.: CDL: An Expressive and Flexible Capability Representation for Brokering. gw@itc.itGoogle Scholar
  35. 35.
    Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. The Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar
  36. 36.
    Web Services Description Language (WSDL) 1.1, January 23, Microsoft Corporation (2001), http://msdn.microsoft.com/xml/general/wsdl.asp
  37. 37.
    Zacharia, G., Moukas, A., Maes, P.: Collaborative Reputation Mechanisms in Electronic Marketplaces. In: Proceedings of the 32nd Hawaii International Conference on System Sciences (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Xiaocheng Luan
    • 1
  • Yun Peng
    • 2
  • Timothy Finin
    • 2
  1. 1.Aquilent Inc.BoydsUSA
  2. 2.Department of Computer Science and Electrical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations