Solving Dynamic Resource Constraint Project Scheduling Problems Using New Constraint Programming Tools

  • Abdallah Elkhyari
  • Christelle Guéret
  • Narendra Jussien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)


Timetabling problems have been much studied over the last decade. Due to the complexity and the variety of such problems, most work concerns static problems in which activities to schedule and resources are known in advance, and constraints are fixed. However, every timetabling problem is subject to unexpected events (for example, for university timetabling problems, a missing teacher, or a slide projector breakdown). In such a situation, one has to quickly build a new solution which takes these events into account and which is preferably not too different from the current one. We introduce in this paper constraint-programming-based tools for solving dynamic timetabling problems modelled as Resource-Constrained Project Scheduling Problems. This approach uses explanation-based constraint programming and operational research techniques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artigues, C., Roubellat, F.: A Polynomial Activity Insertion Algorithm in a Multiresource Schedule with Cumulative Constraints and Multiple Modes. Eur. J. Oper. Res. 127, 179–198 (2000)CrossRefGoogle Scholar
  2. 2.
    Bessière, C.: Arc Consistency in Dynamic Constraint Satisfaction Problems. In: Proc. AAAI 1991 (1991)Google Scholar
  3. 3.
    Blazewicz, J., Lenstra, J.K., Rinnoy Kan, A.H.G.: Scheduling Projects Subject to Resource Constraints: Classification and Complexity. Discr. Appl. Math. 5, 11–24 (1983)zbMATHCrossRefGoogle Scholar
  4. 4.
    Boizumault, P., Delon, Y., Péridy, L.: Constraint Logic Programming for Examination Timetabling. J. Logic Programming: Appl. Logic Programming (Special Issue) 26, 217–233 (1996)zbMATHGoogle Scholar
  5. 5.
    Brucker, P., Drexl, A., Möring, R., Neumann, K., Pesch, E.: Resource-Constrained Project Scheduling: Notation, Classification, Models and Methods. Eur. J. Oper. Res. 112, 3–41 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Brucker, P., Knust, S., Schoo, A., Thiele, O.: A Branch and Bound Algorithm for the Resource-Constrained Project Scheduling Problem. Eur. J. Oper. Res. 107, 272–288 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Brucker, P., Knust, S.: Resource-Constrained Project Scheduling and Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 277–293. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Burke, E.K., Elliman, D.G., Weare, R.F.: A University Timetabling System Based on Graph Colouring and Constraint Manipulation. J. Res. Comput. in Ed. 27, 1–18 (1994)Google Scholar
  9. 9.
    Caseau, Y., Laburthe, F.: Cumulative Scheduling with Task-Intervals. In: JICSLP 1996: Joint Int. Conf. Symp. on Logic Programming (1996)Google Scholar
  10. 10.
    Caseau, Y., Laburthe, F.: Improving CLP Scheduling with Task Intervals. In: Van Hentenryck, P. (ed.) Proc. 11th Int. Conf. Logic Program (ICLP 1994), pp. 369–383. MIT Press, Cambridge (1994)Google Scholar
  11. 11.
    Debruyne, R., Ferrand, G., Jussien, N., Lesaint, W., Ouis, S., Tessier, A.: Correctness of Constraint Retraction Algorithms. In: FLAIRS 2003: 16th Int. Florida Artif. Intell. Res. Soc. Conf., St Augustine, FL, AAAI Press, Menlo Park (2003)Google Scholar
  12. 12.
    Demeulemeester, E., Herroelen, W.: A Branch and Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem. Management Sci. 38, 1803–1818 (1992)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dignum, F.P.M., Nuijten, W.P.M., Janssen, L.M.A.: Solving a Time Tabling Problem by Constraint Satisfaction. Technical Report, Eindhoven University of Technology (1995)Google Scholar
  14. 14.
    Goltz, H.J.: Combined Automatic and Interactive Timetabling using Constraint Logic Programming. In: Proc. PATAT 2000, Konstanz, Germany (August 2000) Google Scholar
  15. 15.
    Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building University Timetables Using Constraint Logic Programming. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Guéret, C., Jussien, N., Prins, C.: Using Intelligent Backtracking to Improve Branch and Bound Methods: an Application to Open-Shop Problems. Eur. J. Oper. Res. 127, 344–354 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Hertz, A.: Tabu Search for Large Scale Timetabling Problems. Eur. J. Oper. Res. 54, 39–47 (1991)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jussien, N.: E-constraints: Explanation-Based Constraint Programming. In: Workshop on User-Interaction in Constraint Satisfaction, CP 2001, Paphos, Cyprus (December 2001)Google Scholar
  19. 19.
    Jussien, N., Boizumault, P.: Dynamic Backtraking with Constraint Propagation – Application to Static and Dynamic CSPs. In: Workshop on The Theory and Practice of Dynamic Constraint Satisfaction, CP 1997, Schloss Hagenberg, Austria (November 1997) Google Scholar
  20. 20.
    Jussien, N., Debruyne, R., Boizumault, P.: Maintaining Arc-Consistency within Dynamic Backtracking. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 249–261. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Jussien, N., Lhomme, O.: Local Search with Constraint Propagation and Conflict- Based Heuristics. Artif. Intell. 139, 21–45 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jussien, N., Ouis, S.: User-Friendly Explanations for Constraint Programming. In: ICLP 2001 11thWorkshop on Logic Programming Environments, WLPE 2001, Paphos, Cyprus (December 2001) Google Scholar
  23. 23.
    Kang, L., White, G.M.: A Logic Approach to the Resolution of Constraint in Timetabling. Eur. J. Oper. Res. 61, 306–317 (1992)zbMATHCrossRefGoogle Scholar
  24. 24.
    Klein, R., Scholl, A.: Computing Lower Bounds by Destructive Improvement: an Application to Resource-Constrained Project Scheduling Problem. Eur. J. Oper. Res. 112, 322–345 (1999)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kolisch, R., Hartmann, S.: Heuristic Algorithms for Solving the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis. In: Weglarz, J. (ed.) Handbook on Recent Advances in Project Scheduling, pp. 147–178. Kluwer, Dordrecht (1998)Google Scholar
  26. 26.
    Lajos, G.: Complete University Modular Timetabling Using Constraint Logic Programming. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 148–161. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An Exact Algorithm for Project Scheduling with Resource Constraints Based on a New Mathematical Formulation. Management Sci. 44, 714–729 (1998)zbMATHCrossRefGoogle Scholar
  28. 28.
    Ross, P., Corne, D., Fang, H.-L.: Improving Evolutionary Timetabling with Delta Evaluation and Directed Mutation. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 565–566. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic CSP. In: Proc. 5th IEEE Int. Conf. on Tools with Artif. Intell., pp. 48–55. IEEE, Boston (1993)Google Scholar
  30. 30.
    Sgall, J.: On-line scheduling – a Survey. In: Fiat, A. (ed.) Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  31. 31.
    Stinson, J.P., David, E.W., Khamawala, B.M.: Multiple Resource-Constrained Scheduling using Branch and Bound. IIE Trans. 1, 252–259 (1978)CrossRefGoogle Scholar
  32. 32.
    Tripathy, A.: School Timetabling – a Case in Large Binary Integer Linear Programming. Management Sci. 30, 1473–1489 (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Abdallah Elkhyari
    • 1
  • Christelle Guéret
    • 1
    • 2
  • Narendra Jussien
    • 1
  1. 1.École des Mines de NantesNantes Cedex 3France
  2. 2.IRCCyN, Institut de Recherche en Communications et Cybernétique de NantesFrance

Personalised recommendations