Advertisement

A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem

  • Olivia Rossi-Doria
  • Michael Sampels
  • Mauro Birattari
  • Marco Chiarandini
  • Marco Dorigo
  • Luca M. Gambardella
  • Joshua Knowles
  • Max Manfrin
  • Monaldo Mastrolilli
  • Ben Paechter
  • Luis Paquete
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

The main goal of this paper is to attempt an unbiased comparison of the performance of straightforward implementations of five different metaheuristics on a university course timetabling problem. In particular, the metaheuristics under consideration are Evolutionary Algorithms, Ant Colony Optimization, Iterated Local Search, Simulated Annealing, and Tabu Search. To attempt fairness, the implementations of all the algorithms use a common solution representation, and a common neighbourhood structure or local search. The results show that no metaheuristic is best on all the timetabling instances considered. Moreover, even when instances are very similar, from the point of view of the instance generator, it is not possible to predict the best metaheuristic, even if some trends appear when focusing on particular instance classes. These results underline the difficulty of finding the best metaheuristics even for very restricted classes of timetabling problem.

Keywords

Local Search Simulated Annealing Tabu Search Constraint Violation Soft Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E.H.L., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. Wiley, Chichester (1997)zbMATHGoogle Scholar
  2. 2.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for Configuring Metaheuristics. Technical Report, Intellektik, Technische Universität Darmstadt, Germany (2002)Google Scholar
  3. 3.
    Baeck, T., Fogel, D., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: From Natural to Artificial Swarm Intelligence. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  5. 5.
    Burke, E.K., Carter, M. (eds.): PATAT 1997. LNCS, vol. 1408. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Carter, M.W., Laporte, G.: Recent Developments in Practical Course Timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Cerný, V.: A Thermodynamical Approach to the Traveling Salesman Problem. J. Optim. Theory Appl. 45, 41–51 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chiarandini, M., Stützle, T.: Experimental Evaluation of Course Timetabling Algorithms. Technical Report, FG Intellektik, TU Darmstadt (2002)Google Scholar
  9. 9.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans. Evolut. Comput. 1, 53–66 (1997)CrossRefGoogle Scholar
  10. 10.
    Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man Cybern. 26, 29–41 (1996)CrossRefGoogle Scholar
  11. 11.
    Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1998)Google Scholar
  12. 12.
    Johnson, D.S., McGeoch, L.A.: The Traveling Salesman Problem: A Case Study in Local Optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, New York (1997)Google Scholar
  13. 13.
    Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Simulated Annealing: an Experimental Evaluation I: Graph Partitioning. Oper. Res. 37, 865–892 (1989)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Lourenço, H.R., Martin, O., Stützle, T.: Iterated Local Search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. Int. Series in Oper. Res. Management, vol. 57, pp. 321–353. Kluwer, Dordrecht (2002)Google Scholar
  16. 16.
    Martin, O., Otto, S.W.: Partitioning of Unstructured Meshes for Load Balancing. Concurrency: Pract. Exper. 7, 303–314 (1995)CrossRefGoogle Scholar
  17. 17.
    Paechter, B., Rankin, R.C., Cumming, A., Fogarty, T.C.: Timetabling the Classes of an Entire University with an Evolutionary Algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 865–874. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Paquete, L., Stützle, T.: An Experimental Investigation of Iterated Local Search for Coloring Graphs. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 122–131. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Ross, P., Corne, D., Fang, H.: Improving Evolutionary Timetabling with Delta Evaluation and Directed Mutation. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 560–565. Springer, Heidelberg (1994)Google Scholar
  20. 20.
    Rossi-Doria, O., Blum, C., Knowles, J., Sampels, M., Socha, K., Paechter, B.: A Local Search for the Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 124–127. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Schaerf, A.: A Survey of Automated Timetabling. Artif. Intell. Rev. 13, 87–127 (1999)CrossRefGoogle Scholar
  22. 22.
    Stützle, T.: Local search Algorithms for Combinatorial Problems – Analysis, Improvements, and New Applications. Ph.D. Thesis, TU Darmstadt, Germany (1998)Google Scholar
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Olivia Rossi-Doria
    • 1
  • Michael Sampels
    • 2
  • Mauro Birattari
    • 3
  • Marco Chiarandini
    • 3
  • Marco Dorigo
    • 2
  • Luca M. Gambardella
    • 4
  • Joshua Knowles
    • 2
  • Max Manfrin
    • 2
  • Monaldo Mastrolilli
    • 4
  • Ben Paechter
    • 1
  • Luis Paquete
    • 3
  • Thomas Stützle
    • 3
  1. 1.School of ComputingNapier UniversityEdinburghScotland
  2. 2.IRIDIAUniversité Libre de BruxellesBruxellesBelgium
  3. 3.IntellektikTechnische Universität DarmstadtDarmstadtGermany
  4. 4.IDSIAMannoSwitzerland

Personalised recommendations