Associative Parallel Algorithms for Dynamic Edge Update of Minimum Spanning Trees

  • Anna S. Nepomniaschaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2763)


In this paper we propose two associative parallel algorithms for the edge update of a minimum spanning tree when an edge is deleted or inserted in the underlying graph. These algorithms are represented as the corresponding procedures implemented on a model of associative parallel systems of the SIMD type with vertical data processing (the STAR–machine). We justify correctness of these procedures and evaluate their time complexity.


Undirected Graph Minimum Span Tree Tree Path Underlying Graph Tree Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chin, F., Houck, D.: Algorithms for Updating Minimum Spanning Trees. J. of Computer and System Sciences 16, 333–344 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification – A Technique for Speeding Up Dynamic Graph Algorithms. J. of the ACM 44(5), 669–696 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Foster, C.C.: Content Addressable Parallel Processors. Van Nostrand Reinhold Company, New York (1976)Google Scholar
  4. 4.
    Frederickson, G.: Data Structure for On-line Updating of Minimum Spanning Trees. SIAM J. Comput. 14, 781–798 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Krikelis, A., Weems, C.C.: Associative Processing and Processors. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  6. 6.
    Nepomniaschaya, A.S.: Language STAR for Associative and Parallel Computation with Vertical Data Processing. In: Mirenkov, N.N. (ed.) Proc. of the Intern. Conf. Parallel Computing Technologies, pp. 258–265. World Scientific, Singapure (1991)Google Scholar
  7. 7.
    Nepomniaschaya, A.S., Dvoskina, M.A.: A Simple Implementation of Dijkstra’s Shortest Path Algorithm on Associative Parallel Processors. Fundamenta Informaticae 43, 227–243 (2000)zbMATHGoogle Scholar
  8. 8.
    Nepomniaschaya, A.S.: Comparison of Performing the Prim-Dijkstra Algorithm and the Kruskal Algorithm on Associative Parallel Processors. Cybernetics and System Analysis, Kiev, Naukova Dumka (2), 19–27 (2000) (in Russian. English translation by Plenum Press)Google Scholar
  9. 9.
    Pawagi, S., Kaser, O.: Optimal Parallel Algorithms for Multiple Updates of Minimum Spanning Trees. Algorithmica 9, 357–381 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pawagi, S., Ramakrishnan, I.V.: An O(log n) Algorithm for Parallel Update of Minimum Spanning Trees. Inform. Process. Lett. 22, 223–229 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Potter, J.L.: Associative Computing: A Programming Paradigm for Massively Parallel Computers, Kent State University. Plenum Press, New York (1992)CrossRefGoogle Scholar
  12. 12.
    Spira, P., Pan, A.: On Finding and Updating Spanning Trees and Shortest Paths. SIAM J. Comput. 4, 375–380 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Anna S. Nepomniaschaya
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsSiberian Division of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations