Advertisement

On Converting CNF to DNF

  • Peter Bro Miltersen
  • Jaikumar Radhakrishnan
  • Ingo Wegener
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

We study how big the blow-up in size can be when one switches between the CNF and DNF representations of boolean functions. For a function f:{0,1} n →{0,1}, \({\mathsf{cnfsize}}\left(f\right)\) denotes the minimum number of clauses in a CNF for f; similarly, \({\mathsf{dnfsize}}\left(f\right)\) denotes the minimum number of terms in a DNF for f. For 0≤ m ≤ 2 n − 1, let \({\mathsf{dnfsize}}\left(m,n\right)\) be the maximum \({\mathsf{dnfsize}}\left(f\right)\) for a function f:{0,1} n →{0,1} with \({\mathsf{cnfsize}}\left(f\right) \leq m\). We show that there are constants c 1,c 2 ≥ 1 and ε > 0, such that for all large n and all \(m \in [ \frac{1}{\epsilon}n,2^{\epsilon{n}}]\), we have
$$ 2^{n -- c_1\frac{n}{\log(m/n)}}~ \leq~ {\mathsf{dnfsize}}(m,n) ~\leq~ 2^{n-c_2 \frac{n}{\log(m/n)}}.$$
In particular, when m is the polynomial n c , we get \({\mathsf{dnfsize}} (n^c,n) = 2^{n -\theta(c^{-1}\frac{n}{\log n})}\).

Keywords

Boolean Function Vertex Cover Disjunctive Normal Form Binary Decision Diagram Small Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, Department of Computer Science and Engineering, University of Washington (November 1994), Available online at www.cs.washington.edu/homes/beame/
  2. 2.
    Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathematics 25, 285–287 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bollig, B., Wegener, I.: A very simple function that requires exponential size read-once branching programs. Information Processing Letters 66, 53–57 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Schöning, U.: Deterministic algorithms for k-SAT based on covering codes and local search. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 236–247. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1)n algorithm for k-SAT based on local search. Theoretical Computer Science (to appear)Google Scholar
  6. 6.
    Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Micali, S. (ed.) Randomness and Computation. Advances in Computing Research, vol. 5, pp. 143–170. JAI Press, Greenwich (1989)Google Scholar
  7. 7.
    Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: A probabilistic 3-SAT algorithm further improved. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 192–202. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Katajainen, J., Madsen, J.N.: Performance tuning an algorithm for compressing relational tables. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 398–407. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Applied Mathematics 10, 287–295 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Paturi, R., Pudlàk, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th IEEE Symposium on the Foundations of Computer Science, pp. 628–637 (1998)Google Scholar
  11. 11.
    Quine, W.V.O.: On cores and prime implicants of truth functions. American Mathematics Monthly 66, 755–760 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Razborov, A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55, 24–35 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica 32, 615–623 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Voigt, B., Wegener, I.: Minimal polynomials for the conjunctions of functions on disjoint variables an be very simple. Information and Computation 83, 65–79 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wegener, I.: The Complexity of Boolean Functions. Wiley, Chichester (1987), Freely available via http://ls2-www.cs.uni-dortmund.de/~wegener zbMATHGoogle Scholar
  16. 16.
    Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Peter Bro Miltersen
    • 1
  • Jaikumar Radhakrishnan
    • 2
  • Ingo Wegener
    • 3
  1. 1.Department of Computer ScienceUniversity of AarhusDenmark
  2. 2.School of Technology and Computer ScienceTata Institute of Fundamental ResearchMumbaiIndia
  3. 3.FB Informatik LS2University of DortmundDortmundGermany

Personalised recommendations