A Unique Decomposition Theorem for Ordered Monoids with Applications in Process Theory

  • Bas Luttik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


We prove a unique decomposition theorem for a class of ordered commutative monoids. Then, we use our theorem to establish that every weakly normed process definable in \({\mathsf{ACP}{}^{{\mathalpha{\varepsilon}}}}\) with bounded communication can be expressed as the parallel composition of a multiset of weakly normed parallel prime processes in exactly one way.


Partial Order Parallel Operator Process Theory Operational Semantic Communication Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Hennessy, M.: Towards action-refinement in process algebras. Inform. and Comput. 103(2), 204–269 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baeten, J.C.M., van Glabbeek, R.J.: Merge and termination in process algebra. In: Nori, K.V. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 153–172. Springer, Heidelberg (1987)Google Scholar
  3. 3.
    Birkhoff, G.: Lattice theory, American Mathematical Society Colloquium Publications, 3rd edn., vol. XXV. American Mathematical Society, Providence (1967)zbMATHGoogle Scholar
  4. 4.
    Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis, University of Edingburgh (1993) Google Scholar
  5. 5.
    Christensen, S., Hirshfeld, Y., Moller, F.: Decomposability, decidability and axiomatisability for bisimulation equivalence on basic parallel processes. In: Proc. of LICS 1993, pp. 386–396. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  6. 6.
    Fokkink, W.J., Luttik, S.P.: An ω-complete equational specification of interleaving. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Fuchs, L.: Partially Ordered Algebraic Systems. International Series of Monographs on Pure and Applied Mathematics, vol. 28. Pergamon Press, Oxford (1963)zbMATHGoogle Scholar
  8. 8.
    Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Hungerford, T.W.: Algebra. GTM, vol. 73. Springer, Heidelberg (1974)zbMATHGoogle Scholar
  10. 10.
    Milner, R., Moller, F.: Unique decomposition of processes. Theoret. Comput. Sci. 107, 357–363 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Moller, F.: Axioms for Concurrency. PhD thesis, University of Edinburgh (1989) Google Scholar
  12. 12.
    Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Vrancken, J.L.M.: The algebra of communicating processes with empty process. Theoret. Comput. Sci. 177, 287–328 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bas Luttik
    • 1
  1. 1.Dept. of Theoretical Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations