Advertisement

Relating Hierarchy of Temporal Properties to Model Checking

  • Ivana Černá
  • Radek Pelánek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

The hierarchy of properties as overviewed by Manna and Pnueli [18] relates language, topology, ω-automata, and linear temporal logic classifications of properties. We provide new characterisations of this hierarchy in terms of automata with Büchi, co-Büchi, and Streett acceptance condition and in terms of \(\Sigma^\mathit{LTL}_i\) and \(\Pi^\mathit{LTL}_i\) hierarchies. Afterwards, we analyse the complexity of the model checking problem for particular classes of the hierarchy and thanks to the new characterisations we identify those linear time temporal properties for which the model checking problem can be solved more efficiently than in the general case.

Keywords

Model Check Transition Function Temporal Property Linear Temporal Logic Safety Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking of linear time logic properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Černá, I., Pelánek, R.: Distributed explicit fair cycle detection. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Černá, I., Pelánek, R.: Relating hierarchy of linear temporal properties to model checking. Technical Report FIMU-RS-2003-03, Faculty of Informatics, Masaryk University (2003), http://www.fi.muni.cz/informatics/reports/
  4. 4.
    Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for the verification of temporal properties. Formal Methods in System Design 1, 275–288 (1992)CrossRefGoogle Scholar
  7. 7.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state verification. In: Proc. Workshop on Formal Methods in Software Practice, pp. 7–15. ACM Press, New York (1998)CrossRefGoogle Scholar
  8. 8.
    Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Etessami, K., Wilke, T.: An Until hierarchy for temporal logic. In: Proc. IEEE Symposium on Logic in Computer Science, pp. 108–117. Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  11. 11.
    Fisler, K., Fraer, R., Vardi, G.K.Y., Yang, Z.: Is there a best symbolic cycle-detection algorithm? In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 420–434. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Proc. Protocol Specification Testing and Verification, pp. 3–18. Chapman & Hall, Boca Raton (1995)Google Scholar
  13. 13.
    Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth first search. In: Proc. SPIN Workshop, pp. 23–32. American Mathematical Society, Providence (1996)Google Scholar
  14. 14.
    Kučera, A., Strejček, J.: The stuttering principle revisited: On the expressiveness of nested X and U operators in the logic LTL. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 276–291. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Löding, C.: Methods for the transformation of omega-automata: Complexity and connection to second order logic. Master’s thesis, Christian-Albrechts-University of Kiel (1998) Google Scholar
  17. 17.
    Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proc. ACM Symposium on Principles of Distributed Computing, pp. 377–410. ACM Press, New York (1990)CrossRefGoogle Scholar
  19. 19.
    Schneider, K.: Improving automata generation for linear temporal logic by considering the automaton hierarchy. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 39–54. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Sistla, A.P.: Safety, liveness, and fairness in temporal logic. Formal Aspects of Computing 6(5), 495–512 (1994)zbMATHCrossRefGoogle Scholar
  21. 21.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Therien, D., Wilke, T.: Nesting Until and Since in linear temporal logic. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 455–464. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Thomas, W.: Languages, automata and logic. In: Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)Google Scholar
  24. 24.
    Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about inifinite computation paths. In: Proc. Symp. on Foundations of Computer Science, Tuscon, pp. 185–194 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ivana Černá
    • 1
  • Radek Pelánek
    • 1
  1. 1.Department of Computer Science, Faculty of InformaticsMasaryk University BrnoCzech Republic

Personalised recommendations