Distributed Quantum Computing

  • Harry Buhrman
  • Hein Röhrig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

Quantum computing combines the framework of quantum mechanics with that of computer science. In this paper we give a short introduction to quantum computing and survey the results in the area of distributed quantum computing and its applications to physics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S., Ambainis, A.: Quantum search of spatial regions (2003); quant-ph/0303041 Google Scholar
  2. 2.
    Abelson, H.: Lower bounds on information transfer in distributed computations. J. Assoc. Comput. Mach. 27(2), 384–392 (1980); Earlier version in FOCS 1978MATHMathSciNetGoogle Scholar
  3. 3.
    Aharonov, D., Ta-Shma, A., Vazirani, U., Yao, A.: Quantum bit escrow. In: Proceedings of STOC 2000, pp. 705–714 (2000)Google Scholar
  4. 4.
    Ambainis, A.: A new protocol and lower bounds for quantum coin flipping. In: Proceedings of 33rd ACM STOC, pp. 134–142 (2001)Google Scholar
  5. 5.
    Ambainis, A.: Lower bound for a class of weak quantum coin flipping protocols (2002); quant-ph/0204063 Google Scholar
  6. 6.
    Ambainis, A., Buhrman, H., Dodis, Y., Röhrig, H.: Multiparty quantum coin flipping (2003) (submitted)Google Scholar
  7. 7.
    Ambainis, A., Schulman, L., Ta-Shma, A., Vazirani, U., Wigderson, A.: The quantum communication complexity of sampling. In: 39th IEEE Symposium on Foundations of Computer Science, pp. 342–351 (1998)Google Scholar
  8. 8.
    Ambainis, A., Shi, Y.: Distributed construction of quantum fingerprints. quant-ph/0305022 (2003) Google Scholar
  9. 9.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49(25), 1804 (1982)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1 (1964)Google Scholar
  11. 11.
    Bennett, C., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Tele-porting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physiscal Review Letters 70, 1895–1899 (1993)MATHCrossRefGoogle Scholar
  12. 12.
    Bennett, C., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physiscal Review Letters 69, 2881–2884 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  14. 14.
    Brassard, G., Cleve, R., Tapp, A.: The cost of exactly simulating quantum entanglement with classical communication. Physical Review Letters 83(9), 1874–1877 (1999)CrossRefGoogle Scholar
  15. 15.
    Buhrman, H., Cleve, R., van Dam, W.: Quantum entanglement and communication complexity. SIAM Journal on Computing 30(8), 1829–1841 (2001); quant-ph/9705033MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Physical Review Letters 87(16) (September 26 2001)Google Scholar
  17. 17.
    Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: 30th Annual ACM Symposium on Theory of Computing (1998); quant-ph/9702040Google Scholar
  18. 18.
    Buhrman, H., de Wolf, R.: Communication complexity lower bounds by polynomials. In: 16th IEEE Annual Conference on Computational Complexity (CCC 2001), pp. 120–130 (2001); cs.CC/9910010Google Scholar
  19. 19.
    Buhrman, H., Höyer, P., Massar, S., Röhrig, H.: Combinatorics and quantum nonlocality. Accepted for publication in Physical Review Letters (2002) Google Scholar
  20. 20.
    Buhrman, H., Höyer, P., Massar, S., Röhrig, H.: Resistance of quantum nonlo-cality to imperfections (2003) (manuscript)Google Scholar
  21. 21.
    Buhrman, H., van Dam, W., Höyer, P., Tapp, A.: Multiparty quantum communication complexity. Physical Review A 60(4), 2737–2741 (1999)CrossRefGoogle Scholar
  22. 22.
    Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication complexity. Physical Review A 56(2), 1201–1204 (1997)CrossRefGoogle Scholar
  23. 23.
    Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. In: Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communications. Springer, Heidelberg (1998)Google Scholar
  24. 24.
    Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)CrossRefGoogle Scholar
  25. 25.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)MATHCrossRefGoogle Scholar
  26. 26.
    Feige, U.: Noncryptographic selection protocols. In: Proceedings of 40th IEEE FOCS, pp. 142–152 (1999)Google Scholar
  27. 27.
    Frankl, P., Rödl, V.: Forbidden intersections. Trans. Amer. Math. Soc. 300(1), 259–286 (1987)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Goldenberg, L., Vaidman, L., Wiesner, S.: Quantum gambling. Physical Review Letters 88, 3356–3359 (1999)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Grover, L.: A fast quantum mechenical algorithm for database search. In: 28th ACM Symposium on Theory of Computing, pp. 212–218 (1996)Google Scholar
  30. 30.
    Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 9(3), 3–11 (1973); English translation in Problems of Information Transmission, 9, 177–183 (1973)MATHMathSciNetGoogle Scholar
  31. 31.
    Høyer, P., de Wolf, R.: Improved quantum communication complexity bounds for disjointness and equality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 299–310. Springer, Heidelberg (2002); quant-ph/0109068CrossRefGoogle Scholar
  32. 32.
    Hromkovič, J.: Communication Complexity and Parallel Computing. EATCS series: Texts in Theoretical Computer Science. Springer, Heidelberg (1997)MATHGoogle Scholar
  33. 33.
    Deutsch, D., Josza, R.: Rapid solutions of problems by quantum computation. Proc. Roy. Soc. London Se. A 439, 553–558 (1992)MATHCrossRefGoogle Scholar
  34. 34.
    Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discrete Mathematics 5(4), 545–557 (1992)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Kitaev, A.Y.: Quantum coin-flipping. Talk at QIP 2003 (slides and video at MSRI) (December 2002) Google Scholar
  36. 36.
    Kremer, I.: Quantum communication. Master’s thesis, Computer Science Department, The Hebrew University (1995) Google Scholar
  37. 37.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  38. 38.
    Lo, H.K., Chau, H.F.: Why quantum bit commitment and ideal quantum coin tossing are impossible. Physica D 120, 177–187 (1998)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances March 3 (1998); quant-ph/9803006 Google Scholar
  40. 40.
    Massar, S.: Nonlocality, closing the detection loophole, and communication complexity. Physical Review A 65, 032121 (2002)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Mayers, D.: Unconditional security in quantum cryptography February 10 (1998); quant-ph/9802025 Google Scholar
  42. 42.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Physical Review Letters 78, 3414–3417 (1997)CrossRefGoogle Scholar
  43. 43.
    Mayers, D., Salvail, L., Chiba-Kohno, Y.: Unconditionally secure quantum coin tossing April 22 (1999); quant-ph/9904078 Google Scholar
  44. 44.
    Mehlhorn, K., Schmidt, E.M.: Las Vegas is better than determinism in VLSI and distributed computing (extended abstract). In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, San Francisco, California, pp. 330–337, May 5-7 (1982)Google Scholar
  45. 45.
    Newman, I.: Private vs. common random bits in communication complexity. Information Processing Letters 39(2), 67–71 (1991)MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  47. 47.
    Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica 15, 557–566 (1995); Earlier version in FOCS 1994MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Raz, R.: Exponential separation of quantum and classical communication complexity. In: Proceedings of 31th STOC, pp. 358-367 (1999) Google Scholar
  49. 49.
    Razborov, A.A.: Quantum communication complexity of symmetric predicates. Izv. Math. 67(1), 145–159 (2003)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Saks, M.: A robust noncryptographic protocol for collective coin flipping. SIAM J. Discrete Math. 2(2), 240–244 (1989)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Spekkens, R., Rudolph, T.: A quantum protocol for cheat-sensitive weak coin flipping (2002); quant-ph/0202118Google Scholar
  52. 52.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)CrossRefGoogle Scholar
  53. 53.
    Yao, A.C.-C.: Some complexity questions related to distributive computing. In: Proceedings of 11th STOC, pp. 209–213 (1979)Google Scholar
  54. 54.
    Yao, A.C.-C.: Quantum circuit complexity. In: Proceedings of 34th FOCS, pp. 352–360 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Harry Buhrman
    • 1
  • Hein Röhrig
    • 1
  1. 1.Centrum voor Wiskunde en Informatica (CWI)AmsterdamThe Netherlands

Personalised recommendations