Advertisement

A Generic Scheme for the Design of Efficient On-Line Algorithms for Lattices

  • Petko Valtchev
  • Mohamed Rouane Hacene
  • Rokia Missaoui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2746)

Abstract.

A major issue with large dynamic datasets is the processing of small changes in the input through correspondingly small rearrangements of the output. This was the motivation behind the design of incremental or on-line algorithms for lattice maintenance, whose work amounts to a gradual construction of the final lattice by repeatedly adding rows/columns to the data table. As an attempt to put the incremental trend on strong theoretical grounds, we present a generic algorithmic scheme that is based on a detailed analysis of the lattice transformation triggered by a row/column addition and of the underlying sub-structure. For each task from the scheme we suggest an efficient implementation strategy and put a lower bound on its worst-case complexity. Moreover, an instanciation of the incremental scheme is presented which is as complex as the best batch algorithm.

Keywords

Binary Relation Lower Cover Formal Concept Analysis Hasse Diagram Incremental Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et combinatoire. Hachette (1970)Google Scholar
  2. 2.
    Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance. Mathématiques et Sciences Humaines 96, 31–47 (1986)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Carpineto, C., Romano, G.: A Lattice Conceptual Clustering System and Its Application to Browsing Retrieval. Machine Learning 24(2), 95–122 (1996)Google Scholar
  4. 4.
    Ganter, B.: Two basic algorithms in concept analysis, Technische Hochschule, Darmstadt (1984) (preprint 831)Google Scholar
  5. 5.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  6. 6.
    Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using Galois lattices. In: Proceedings of OOPSLA 1993, Washington (DC), Special issue of ACM SIGPLAN Notices vol. 28(10), pp. 394–410 (1993)Google Scholar
  7. 7.
    Godin, R., Missaoui, R.: An Incremental Concept Formation Approach for Learning from Databases. Theoretical Computer Science 133, 378–419 (1994)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on galois (concept) lattices. Computational Intelligence 11(2), 246–267 (1995)CrossRefGoogle Scholar
  9. 9.
    Kuznetsov, S., Ob’edkov, S.: Algorithms for the Construction of the Set of All Concept and Their Line Diagram. preprint MATH-AL-05-2000, Technische Universität, Dresden (June 2000)Google Scholar
  10. 10.
    Nourine, L., Raynaud, O.: A Fast Algorithm for Building Lattices. Information Processing Letters 71, 199–204 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Valtchev, P., Missaoui, R.: Building concept (Galois) lattices from parts: generalizing the incremental methods. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 290–303. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Valtchev, P., Missaoui, R.: A Framework for Incremental Generation of Frequent Closed Itemsets. Discrete Applied Mathematics (submitted)Google Scholar
  13. 13.
    Valtchev, P., Missaoui, R., Godin, R., Meridji, M.: Generating Frequent Itemsets Incrementally: Two Novel Approaches Based On Galois Lattice Theory. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 115–142 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Petko Valtchev
    • 1
  • Mohamed Rouane Hacene
    • 1
  • Rokia Missaoui
    • 2
  1. 1.DIROUniversité de MontréalMontréalCanada
  2. 2.Département d’informatique et d’ingénierieUQOGatineauCanada

Personalised recommendations