An AC-Compatible Knuth-Bendix Order

  • Konstantin Korovin
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2741)


We introduce a family of AC-compatible Knuth-Bendix simplification orders which are AC-total on ground terms. Our orders preserve attractive features of the original Knuth-Bendix orders such as existence of a polynomial-time algorithm for comparing terms; computationally efficient approximations, for instance comparing weights of terms; and preference of light terms over heavy ones. This makes these orders especially suited for automated deduction where efficient algorithms on orders are desirable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Bachmair, L.: Associative-commutative reduction orderings. Information Processing Letters 43(1), 21–27 (1992)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bachmair, L., Plaisted, D.: Associative path orderings. In: Jouannaud, J.-P. (ed.) RTA 1985. LNCS, vol. 202, pp. 241–254. Springer, Heidelberg (1985)Google Scholar
  4. 4.
    Cherifa, A.B., Lescanne, P.: Termination of rewriting systems by polynomial interpretations and its implementation. Science of Computer Programming 9(2), 137–159 (1987)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dershowitz, N., Hsiang, J., Josephson, A., Plaisted, D.: Associative-commutative rewriting. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI), pp. 940–944 (1983)Google Scholar
  6. 6.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the ACM (CACM) 22(8), 465–476 (1979)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dick, J., Kalmus, J., Martin, U.: Automating the Knuth-Bendix ordering. Acta Informatica 28(2), 95–119 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gnaedig, I., Lescanne, P.: Proving termination of associative commutative rewriting systems by rewriting. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 52–61. Springer, Heidelberg (1986)Google Scholar
  9. 9.
    Kapur, D., Sivakumar, G.: A total, ground path ordering for proving termination of ac-rewrite systems. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 142–156. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Kapur, D., Sivakumar, G.: Proving associative-communicative termination using rpo-compatible orderings. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 39–61. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Kapur, D., Sivakumar, G., Zhang, H.: A new method for proving termination of ac-rewrite systems. In: Veni Madhavan, C.E., Nori, K.V. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 133–148. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Kapur, D., Sivakumar, G., Zhang, H.: A path ordering for proving termination of ac rewrite systems. Journal of Automated Reasoning 14(2), 293–316 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Korovin, K., Voronkov, A.: Verifying orientability of rewrite rules using the Knuth-Bendix order. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 137–153. Springer, Heidelberg (2001); full version to appear in Information and ComputationCrossRefGoogle Scholar
  14. 14.
    Korovin, K., Voronkov, A.: Orienting equalities using the Knuth–Bendix order. In: Proceedings of the 18th IEEE Symposium on Logic in Computer Science, LICS 2003 (2003) (to appear)Google Scholar
  15. 15.
    Marché, C.: Associative-commutative reduction orderings via head-preserving interpretations. Technical Report 95-2, E.N.S. de Cachan (1995)Google Scholar
  16. 16.
    Narendran, P., Rusinowitch, M.: Any ground associative-commutative theory has a finite canonical system. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 423–434. Springer, Heidelberg (1991)Google Scholar
  17. 17.
    Nieuwenhuis, R., Rubio, A.: A precedence-based total AC-compatible ordering. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 374–388. Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Rubio, A.: A fully syntactic AC-RPO. To appear in Information and ComputationGoogle Scholar
  19. 19.
    Rubio, A.: A fully syntactic AC-RPO. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 133–147. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Steinbach, J.: AC-termination of rewrite systems: A modified Knuth-Bendix ordering. In: Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS, vol. 463. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Andrei Voronkov
    • 2
  1. 1.MPI für Informatik 
  2. 2.University of Manchester 

Personalised recommendations