A Principle for Incorporating Axioms into the First-Order Translation of Modal Formulae

  • Renate A. Schmidt
  • Ullrich Hustadt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2741)

Abstract

In this paper we present a translation principle, called the axiomatic translation, for reducing propositional modal logics with background theories, including triangular properties such as transitivity, Euclideanness and functionality, to decidable logics. The goal of the axiomatic translation principle is to find simplified theories, which capture the inference problems in the original theory, but in a way that is more amenable to automation and easier to deal with by existing theorem provers. The principle of the axiomatic translation is conceptually very simple and can be largely automated. Soundness is automatic under reasonable assumptions, and termination of ordered resolution is easily achieved, but the non-trivial part of the approach is proving completeness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Giacomo, G.: Eliminating “converse” from converse PDL. J. Logic, Language and Inform. 5(2), 193–208 (1996)MATHGoogle Scholar
  2. 2.
    De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Logic J. IGPL 8(3), 265–292 (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Demri, S.: The complexity of regularity in grammar logics and related modal logics. Journal of Logic and Computation 11(6), 933–960 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order logic (2002) (manuscript)Google Scholar
  5. 5.
    Demri, S., Goré, R.: Tractable transformations from modal provability logics into first-order logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 16–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Gabbay, D.M.: Decidability results in non-classical logics. Ann. Math. Logic 8, 237–295 (1975)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ganzinger, H., Meyer, C., de Nivelle, H.: The two-variable guarded fragment with transitive relations. In: Proc. LICS, pp. 24–34. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  8. 8.
    Hustadt, U., Dixon, C., Schmidt, R.A., Fisher, M.: Normal forms and proofs in combined modal and temporal logics. In: Kirchner, H. (ed.) FroCos 2000. LNCS (LNAI), vol. 1794, pp. 73–87. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof systems for description logics. In: Proc. IJCAI 1999, pp. 110–115. Morgan Kaufmann, San Francisco (1999)Google Scholar
  10. 10.
    Kracht, M.: Tools and Techniques in Modal Logic. Studies in Logic, vol. 142. Elsevier, Amsterdam (1999)MATHCrossRefGoogle Scholar
  11. 11.
    Kracht, M.: Reducing modal consequence relations. J. Logic Computat. 11(6), 879–907 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kracht, M.: Notes on the space requirements for checking satisfiability in modal logics. To appear in Advances in Modal Logic 4 (2002)Google Scholar
  13. 13.
    Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 181–200. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Ohlbach, H.J.: Combining Hilbert style and semantic reasoning in a resolution framework. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 205–219. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Schmidt, R.A., Hustadt, U.: A principle for incorporating axioms into the firstorder translation of modal formulae. Preprint CSPP-22, Univ. Manchester, UK (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Renate A. Schmidt
    • 1
    • 2
  • Ullrich Hustadt
    • 3
  1. 1.University of Manchester 
  2. 2.Max Planck Institute for Computer ScienceSaarbrücken
  3. 3.University of Liverpool 

Personalised recommendations