TRP++ 2.0: A Temporal Resolution Prover

  • Ullrich Hustadt
  • Boris Konev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2741)

Abstract

Temporal logics are extensions of classical logic with operators that deal with time. They have been used in a wide variety of areas within Computer Science and Artificial Intelligence, for example robotics [14], databases [15], hardware verification [8] and agent-based systems [12].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentley, J., Sedgewick, R.: Fast algorithms for sorting and searching strings. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (1997)Google Scholar
  2. 2.
    Dixon, C.: Search strategies for resolution in temporal logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 673–687. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Dixon, C.: Using Otter for temporal resolution. In: Advances in Temporal Logic, pp. 149–166. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  4. 4.
    Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, ch. 16, pp. 997–1072. Elsevier, Amsterdam (1990)Google Scholar
  5. 5.
    Fisher, M.: A resolution method for temporal logic. In: Proc. IJCAI 1991, pp. 99–104. Morgan Kaufmann, San Francisco (1991)Google Scholar
  6. 6.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hoepman, J.-H.: Uniform deterministic self-stabilizing ring-orientation on oddlength rings. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 265–279. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  8. 8.
    Holzmann, G.J.: The model checker Spin. IEEE Trans. on Software Engineering 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hustadt, U., Konev, B.: TRP++: A temporal resolution prover. In: Proc. WIL 2002 (2002), Available as http://www.lsi.upc.es/~roberto/wilproceedings.html
  10. 10.
    Hustadt, U., Schmidt, R.A.: Scientific benchmarking with temporal logic decision procedures. In: Proc. KR 2002, pp. 533–544. Morgan Kaufmann, San Francisco (2002)Google Scholar
  11. 11.
    Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. III. Addison-Wesley, Reading (1973)Google Scholar
  12. 12.
    Rao, A.S., Georgeff, M.P.: Decision procedures for BDI logics. Journal of Logic and Computation 8(3), 293–343 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. Journal of Symbolic Computation (to appear) Google Scholar
  14. 14.
    Shanahan, M.P.: Solving the Frame Problem. MIT Press, Cambridge (1997)Google Scholar
  15. 15.
    Tansel, A. (ed.): Temporal Databases: theory, design, and implementation. Benjamin/ Cummings (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ullrich Hustadt
    • 1
  • Boris Konev
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK

Personalised recommendations