Chapter 5: Spatio-temporal Models and Languages: An Approach Based on Constraints

  • Stéphane Grumbach
  • Manolis Koubarakis
  • Philippe Rigaux
  • Michel Scholl
  • Spiros Skiadopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2520)


The introduction of spatio-temporal information in database systems presents us with an important data modelling challenge: the design of data models general and powerful enough to handle conventional thematic data, purely temporal or spatial concepts and spatio-temporal concepts.


Linear Constraint Query Language Very Large Data Base Constraint Store Relational Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudinet, M., Chomicki, J., Wolper, P.: Temporal Deductive Databases. In: Tansel, A., et al. (eds.) Temporal Databases: Theory, Design, and Implementation. ch. 13, Benjamin/Cummings Pub. Co. (1993)Google Scholar
  2. 2.
    Beeri, C.: Data Models and Languages for Databases. In: Gyssens, M., Van Gucht, D., Paredaens, J. (eds.) ICDT 1988. LNCS, vol. 326, pp. 58–67. Springer, Heidelberg (1989)Google Scholar
  3. 3.
    Belussi, A., Bertino, E., Catania, B.: Manipulating Spatial Data in Constraint Databases. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 115–140. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Belussi, A., Bertino, E., Catania, B.: An Extended Algebra for Constraint Databases. IEEE Transactions on Knowledge and Data Engineering 10(5), 686–705 (1998)CrossRefGoogle Scholar
  5. 5.
    Brodsky, A., Segal, V.E.: The CCUBE Constraint Object-Oriented Database System: an Overview. Constraints 2(3-4), 245–277 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Brodsky, A., Segal, V.E., Chen, J., Exarkhopoulo, P.A.: The CCUBE Constraint Object-Oriented Database System. In: Proceedings of SIGMOD 1999, pp. 577–579 (2000)Google Scholar
  7. 7.
    Cai, M., Keshwani, D., Revesz, P.Z.: Parametric rectangles: A model for querying and animation of spatio-temporal databases. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 430–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Chardonnel, S., Dumolard, P.: Personal communicationGoogle Scholar
  9. 9.
    Chomicki, J., Liu, Y., Revesz, P.Z.: Animating spatiotemporal constraint databases. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 224–241. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Chomicki, J., Revesz, P.Z.: Constraint-based Interoperability of Spatiotemporal Databases. GeoInformatica 3(3), 211–243 (1999)CrossRefGoogle Scholar
  11. 11.
    Chomicki, J., Revesz, P.Z.: A geometric framework for specifying spatiotemporal objects. In: Proceedings of TIME 1999, pp. 41–46 (1999)Google Scholar
  12. 12.
    Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Artificial Intelligence 49(1-3), 61–95 (1991); Special Volume on Knowledge RepresentationzbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dumas, M., Fauvet, M.-C., Scholl, P.-C.: Handling Temporal Grouping and Pattern-Matching Queries in a Temporal Object Model. In: Proc. Intl. Conf. on Information and Knowledge Management, pp. 424–431 (1998)Google Scholar
  14. 14.
    Grahne, G.: The Problem of Incomplete Information in Relational Databases. In: Grahne, G. (ed.) The Problem of Incomplete Information in Relational Databases. LNCS, vol. 554, Springer, Heidelberg (1991); Technical Report Report A-1989-1, Department of Computer Science, University of Helsinki, Finland (1989)Google Scholar
  15. 15.
    Grumbach, S., Rigaux, P., Scholl, M., Segoufin, L.: dedale: A Spatial Constraint Database. In: Proc. Intl. Workshop on Database Programming Languages, pp. 38–59 (1997)Google Scholar
  16. 16.
    Grumbach, S., Rigaux, P., Segoufin, L.: The dedale System for Complex Spatial Queries. In: Proc. ACM SIGMOD Symp. on the Management of Data, pp. 213–224 (1998)Google Scholar
  17. 17.
    Grumbach, S., Rigaux, P., Segoufin, L.: On the Orthographic Dimension of Constraint Databases. In: Proc. Intl. Conf. on Database Theory, pp. 199–216 (1999)Google Scholar
  18. 18.
    Grumbach, S., Su, J., Tollu, C.: Linear Constraint Query Languages: Expressive Power and Complexity. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Güting, R.H.: Gral: An Extensible Relational Database System for Geometric Applications. In: Proc. Intl. Conf. on Very Large Data Bases, VLDB (1989)Google Scholar
  20. 20.
    Güting, R.H., Schneider, M.: Realm-Based Spatial Data Types: The ROSE Algebra. The VLDB Journal 4(3), 243–286 (1995)CrossRefGoogle Scholar
  21. 21.
    Herring, J.: The ORACLE 7 Spatial Data Option. Technical report, ORACLE Corp. (1996)Google Scholar
  22. 22.
    Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Methuen, London (1968)zbMATHGoogle Scholar
  23. 23.
    Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal of ACM 31(4), 761–791 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kabanza, F., Stevenne, J.-M., Wolper, P.: Handling Infinite Temporal Data. In: Proceedings of ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 392–403 (1990); Full version appears in JCSS 51(1), 3-17 (1995)Google Scholar
  25. 25.
    Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. In: Proc. ACM Symp. on Principles of Database Systems, pp. 299–313 (1990); A longer version appears in JCSS 51(1) (1995)Google Scholar
  26. 26.
    Koubarakis, M.: Representation and Querying in Temporal Databases: the Power of Temporal Constraints. In: Proceedings of the 9th International Conference on Data Engineering, pp. 327–334 (April 1993)Google Scholar
  27. 27.
    Koubarakis, M.: Database Models for Infinite and Indefinite Temporal Information. Information Systems 19(2), 141–173 (1994)CrossRefGoogle Scholar
  28. 28.
    Koubarakis, M.: Foundations of Indefinite Constraint Databases. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 266–280. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Koubarakis, M.: Databases and Temporal Constraints: Semantics and Complexity. In: Clifford, J., Tuzhilin, A. (eds.) Recent Advances in Temporal Databases (Proceedings of the International Workshop on Temporal Databases), Workshops in Computing, Zürich, Switzerland, pp. 93–109. Springer, Heidelberg (1995)Google Scholar
  30. 30.
    Koubarakis, M.: The Complexity of Query Evaluation in Indefinite Temporal Constraint Databases. Theoretical Computer Science 171, 25–60 (1997); In: Lakshmanan, L.V.S. (ed.): Special Issue on Uncertainty in Databases and Deductive SystemszbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Koubarakis, M., Skiadopoulos, S.: Querying Temporal Constraint Networks in PTIME. In: Proceedings of AAAI 1999, pp. 745–750 (1999)Google Scholar
  32. 32.
    Koubarakis, M., Skiadopoulos, S.: Tractable Query Answering in Indefinite Constraint Databases: Basic Results and Applications to Querying Spatio-Temporal Information. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 204–223. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  33. 33.
    Kuper, G., Libkin, L., Paredaens, J. (eds.): Constraint Databases. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  34. 34.
    Kuper, G., Ramaswamy, S., Shim, K., Su, J.: A Constraint-Based Spatial Extension to SQL. In: Proc. Intl. Symp. on Geographic Information Systems (1998)Google Scholar
  35. 35.
    Orenstein, J., Manola, F.: PROBE: Spatial DataModeling and Query Processing in an Image Database Application. IEEE Transactions on Software Engineering 14(5), 611–628 (1988)CrossRefGoogle Scholar
  36. 36.
    Paredaens, J., Van den Bussche, J., Van Gucht, D.: Towards a Theory of Spatial Database Queries. In: Proc. 13th ACM Symp. on Principles of Database Systems, pp. 279–288 (1994)Google Scholar
  37. 37.
    Revesz, P.Z.: A Closed Form Evaluation for Datalog Queries with Integer (Gap)- Order Constraints. Theoretical Computer Science 116(1), 117–149 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Revesz, P.Z., Chen, R., Kanjamala, P., Li, Y., Liu, Y., Wang, Y.: The MLPQ/GIS Constraint Database. In: Proceedings of SIGMOD 2000 (2000)Google Scholar
  39. 39.
    Roussopoulos, N., Faloutsos, C., Sellis, T.: An Efficient Pictorial Database System for PSQL. IEEE Transactions on Software Engineering 14(5), 639–650 (1988)CrossRefGoogle Scholar
  40. 40.
    Scholl, M., Voisard, A.: Thematic Map Modeling. In: Buchmann, A., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 167–192. Springer, Heidelberg (1990)Google Scholar
  41. 41.
    Scholl, P.-C., Fauvet, M.-C., Canavaggio, J.-F.: Un Modèle d’Historique pour un SGBD Temporel. TSI 17(3) (March 1998)Google Scholar
  42. 42.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)zbMATHGoogle Scholar
  43. 43.
    Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and Querying Moving Objects. In: Proceedings of ICDE 1997 (1997)Google Scholar
  44. 44.
    Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  45. 45.
    Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R. (eds.): Temporal Databases: Theory, Design, and Implementation. Database Systems and Applications Series. Benjamin/Cummings Pub. Co. (1993)Google Scholar
  46. 46.
    Toman, D., Chomicki, J., Rogers, D.S.: Datalog with Integer Periodicity Constraints. In: Proceedings of the International Symposium on Logic Programming, pp. 189–203 (1994)Google Scholar
  47. 47.
    Ubell, M.: The Montage Extensible DataBlade Architecture. In: Proc. ACM SIGMOD Intl. Conference on Management of Data (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Stéphane Grumbach
    • 1
  • Manolis Koubarakis
    • 2
  • Philippe Rigaux
    • 3
  • Michel Scholl
    • 1
  • Spiros Skiadopoulos
    • 4
  1. 1.INRIA, RocquencourtFrance
  2. 2.Technical University of CreteChaniaGreece
  3. 3.CNAMParisFrance
  4. 4.National Technical University of AthensGreece

Personalised recommendations