An Image Retrieval Method Based on Collaborative Filtering

  • Xiangdong Zhou
  • Qi Zhang
  • Liang Zhang
  • Li Liu
  • Baile Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2690)

Abstract

Relevance feedback plays an important role in image retrieval. As a short-term learning strategy, it learns from the user’s relevance evaluation on the current retrieval’s output result to improve the retrieval performance. Nowadays using long-term learning strategy to improve image retrieval attracts more and more attention. In this paper, we present a composite image retrieval approach using both of them to improve image retrieval. Our approach is based on on-line analysis of feedback sequence log, the archive of the user’s feedback evaluation data sequence created in the past. For long-term learning, Collaborative Filtering is adopted to predict the semantic correlations between images. During CF process, we make use of Edit Distance to evaluate the similarity between the feedback sequence records. Experiments over 11,000 images demonstrate that our method achieves significant improvement in retrieval effectiveness compared with conventional method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartolini, I., Ciaccia, P., Waas, F.: FeedbackBypass:A New Approach to Interactive Similarity Query Processing. In: Proceedings of 27th VLDB, Roma, Italy, September 2001, pp. 201–210. Morgan Kaufmann, San Francisco (2001)Google Scholar
  2. 2.
    Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an information tapestry. Communications of the ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  3. 3.
    He, X., King, O., Ma, W.-Y., Li, M., Zhang, H.-J.: Learning and Inferring a Semantic Space from User’s relevance feedback for image retrieval. In: Proc. of the 10th ACM Int’l Conf. Multimedia Conference, France. ACM Press, New York (2002)Google Scholar
  4. 4.
    Ishikawa, Y., Subramanya, R., Faloustos, C.: MinderReader:Query database through multimple examples. In: Proc. Of VLDB 1998, pp. 218–227 (1998)Google Scholar
  5. 5.
    kohrs, A., Merialdo, B.: Improving Collaborative Filtering with Multimedia Indexing Techniques to create User-Adapting Web Sites. In: Proc. of the 7th ACM Conf. on Multimedia. ACM Press, New York (1999)Google Scholar
  6. 6.
    Muller, H., Muller, W., Squire, D.: Learning Feature Weights from User Behavior in Content-Based Image Retrieval. In: Proc. of the Int’l Workshop on Multimedia Data Mining, USA (August 2000)Google Scholar
  7. 7.
    Rocchio, J.: Relevance feedback in information retrieval. The SMART retrieval system- experiments in automatic Document Processing, 313–323 (1971)Google Scholar
  8. 8.
    Rui, Y., Huang, T.S., Mehrotra, S.: Content-based Image Retrieval with Relevance Feedback in MARS. In: Proc. of IEEE Int’l Conf. on Image Processing, vol. II, pp. 815–818 (1997)Google Scholar
  9. 9.
    Rui, Y., Huang, T.S.: A Novel Relevance Feedback Technique in Image Retrieval. In: Proc. of the 7th ACM Conf. on Multimedia, pp. 67–70. ACM press, New York (1999)CrossRefGoogle Scholar
  10. 10.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of Recommendation Algorithms for E-commerce. In: Proc. of the 2nd ACM Conf. on Electronic Commerce, USA, pp. 158–167. ACM Press, New York (2000)CrossRefGoogle Scholar
  11. 11.
    Ukkonen, E.: Algorithms for approximate string matching. Information and Control 64, 100–118 (1985)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yang, J., Li, Q., Zhuang, Y.: Image Retrieval and Relevance Feedback using Peer Index. In: Proc. of IEEE Int’l Conf. Multimedia and Expo, Lausanne, Switzerland (August 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Xiangdong Zhou
    • 1
  • Qi Zhang
    • 1
  • Liang Zhang
    • 1
  • Li Liu
    • 1
  • Baile Shi
    • 1
  1. 1.Department of Computing and Information TechnologyFudan UniversityShanghaiChina

Personalised recommendations