A Model for Analyzing Black-Box Optimization

  • Vinhthuy Phan
  • Steven Skiena
  • Pavel Sumazin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2748)

Abstract

The design of heuristics for NP-hard problems is perhaps the most active area of research in the theory of combinatorial algorithms. However, practitioners more often resort to local-improvement heuristics such as gradient-descent search, simulated annealing, tabu search, or genetic algorithms. Properly implemented, local-improvement heuristics can lead to short, efficient programs that yield reasonable solutions. Designers of efficient local-improvement heuristics must make several crucial decisions, including the choice of neighborhood and heuristic for the problem at hand. We are interested in developing a general methodology for predicting the quality of local-neighborhood operators and heuristics, given a time budget and a solution evaluation function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., Lenstra, J.K.: The Traveling Salesman Problem: A Case Study. Wiley, Chichester (1997)Google Scholar
  2. 2.
    Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reducing the complexity of reductions. In: ACM Symposium on Theory of Computing, pp. 730–738 (1997)Google Scholar
  3. 3.
    Aldous, D., Vazirani, U.V.: Go with the Winners algorithms. In: IEEE Symposium on Foundations of Computer Science, pp. 492–501 (1994)Google Scholar
  4. 4.
    Beame, P., Cook, S., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative complexity of NP search problems. In: ACM Symposium on Theory of Computing, pp. 303–314 (1995)Google Scholar
  5. 5.
    Carson, T., Impagliazzo, R.: Hill-climbing finds random planted bisections. In: Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 903–909 (2001)Google Scholar
  6. 6.
    Gutin, G., Yeo, A.: TSP heuristics with large domination number. Technical Report PP-1998-13, Odense University, Denmark, August 20 (1998) Google Scholar
  7. 7.
    Gutin, G., Yeo, A., Zverivich, A.: Polynominal restriction approach for the atsp and stsp. The Traveling Salesman Problem (to appear)Google Scholar
  8. 8.
    Hajek, B.: Cooling schedules for optimal simulated annealing. Math. Operations Res. 13, 311–329 (1988)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ho, Y., Sreeniva, R., Vakili, P.: Ordinal optimization of discrete event dynamic systems. J. on DEDS 2, 61–68 (1992)MATHGoogle Scholar
  10. 10.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? In: Proc. 26th Annual Symp. on Foundations of Computer Science, pp. 39–42 (1985); Also J. Computer System Sci. 37(1), 79-100 (1988)Google Scholar
  11. 11.
    Juels, A.: Topics in black box optimization. Ph.D. Thesis, University of California, Berkeley (1996) Google Scholar
  12. 12.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell system technical journal 49(1), 291–307 (1970)Google Scholar
  13. 13.
    Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Martin, O., Otto, S., Felten, E.: Large-step markov chains for the traveling salesman problem. Complex Systems 5, 299–326 (1991)MATHMathSciNetGoogle Scholar
  15. 15.
    Papadimitriou, C.H., Schaffer, A., Yannakakis, M.: On the complexity of local search. In: Proc. 22nd Annual ACM Symp. on Theory of Computing, pp. 438–445 (1990)Google Scholar
  16. 16.
    Phan, V., Sumazin, P., Skiena, S.: A time-sensitive system for black-box combinatorial optimization. In: 4th Workshop on Algorithm Engineering and Experiments, San Francisco, USA (January 2002)Google Scholar
  17. 17.
    Reinelt, G.: TSPLIB. University of Heidelberg, www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
  18. 18.
    Resende, M.: Max-Satisfiability Data. Information Sciences Research Center, AT&T, www.research.att.com/~mgcr
  19. 19.
    Tovey, C.A.: Local improvements on discrete structures. In: Aarts, E., Lenstra, J.K. (eds.) Local Search and Combinatorial Optimization, pp. 57–89. John Wiley and Sons Ltd., Chichester (1997)Google Scholar
  20. 20.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vinhthuy Phan
    • 1
  • Steven Skiena
    • 2
  • Pavel Sumazin
    • 3
  1. 1.Computer ScienceSUNY at Stony BrookStony BrookUSA
  2. 2.Computer ScienceState University of New York at Stony BrookStony BrookUSA
  3. 3.Computer SciencePortland State UniversityOregon

Personalised recommendations