Advertisement

Online Seat Reservations via Offline Seating Arrangements

  • Jens S. Frederiksen
  • Kim S. Larsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2748)

Abstract

When reservations are made to for instance a train, it is an on-line problem to accept or reject, i.e., decide if a person can be fitted in given all earlier reservations. However, determining a seating arrangement, implying that it is safe to accept, is an off-line problem with the earlier reservations and the current one as input. We develop optimal algorithms to handle problems of this nature.

Keywords

Leaf Node Competitive Ratio Interval Graph Decision Tree Model Left Child 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, W.: Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen 99, 118–133 (1928)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adel’son-Vel’skiĭ, G.M., Landis, E.M.: An Algorithm for the Organisation of Information. Doklady Akadamii Nauk SSSR 146, 263–266 (1962); In Russian. English translation in Soviet Math. Doklady 3, 1259–1263 (1962)Google Scholar
  3. 3.
    Bach, E., Boyar, J., Epstein, L., Favrholdt, L.M., Jiang, T., Larsen, K.S., Lin, G.-H., van Stee, R.: Tight Bounds on the Competitive Ratio on Accommodating Sequences for the Seat Reservation Problem. Journal of Scheduling 6(2), 131–147 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bach, E., Boyar, J., Jiang, T., Larsen, K.S., Lin, G.-H.: Better Bounds on the Accommodating Ratio for the Seat Reservation Problem. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 221–231. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bentley, J.L.: Solutions to Klee’s Rectangle Problems. Tech. report, Carnegie-Mellon University (1977) Google Scholar
  6. 6.
    Boyar, J., Favrholdt, L.M., Larsen, K.S., Nielsen, M.N.: Extending the Accommodating Function. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 87–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Boyar, J., Larsen, K.S.: The Seat Reservation Problem. Algorithmica 25(4), 403–417 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boyar, J., Larsen, K.S., Nielsen, M.N.: The Accommodating Function: a generalization of the competitive ratio. SIAM Journal on Computing 31(1), 233–258 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  10. 10.
    Dobkin, D.P., Lipton, R.J.: On the Complexity of Computations under Varying Sets of Primitives. Journal of Computer and System Sciences 18(1), 86–91 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Guibas, L.J., Sedgewick, R.: A Dichromatic Framework for Balanced Trees. In: 19th Annual IEEE Symposium on the Foundations of Computer Science, pp. 8–21 (1978) Google Scholar
  12. 12.
    Gupta, U.I., Lee, D.T.: An Optimal Solution for the Channel-Assignment Problem. IEEE Transactions on Computers 28(11), 807–810 (1979)zbMATHCrossRefGoogle Scholar
  13. 13.
    Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons, Chichester (1995)zbMATHGoogle Scholar
  14. 14.
    van Emde Boas, P.: Machine Models and Simulations. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 1, vol. A, pp. 1–66. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  15. 15.
    van Kreveld, M.J., Overmars, M.H.: Union-Copy Structures and Dynamic Segment Trees. Journal of the Association for Computing Machinery 40(3), 635–652 (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jens S. Frederiksen
    • 1
  • Kim S. Larsen
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations