Compositionality of Hennessy-Milner Logic through Structural Operational Semantics

  • Wan Fokkink
  • Rob van Glabbeek
  • Paulien de Wind
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2751)


This paper presents a method for the decomposition of HML formulae. It can be used to decide whether a process algebra term satisfies a HML formula, by checking whether subterms satisfy certain formulae, obtained by decomposing the original formula. The method uses the structural operational semantics of the process algebra. The main contribution of this paper is that an earlier decomposition method from Larsen [14] for the De Simone format is extended to the more general ntyft/ntyxt format without lookahead.


Modal Logic Transition Relation Operational Semantic Transition Rule Proof System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, H.R., Stirling, C., Winskel, G.: Compositional proof system for the modal μ-calculus. In: Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science, pp. 144–153. IEEE Computer Society Press, Paris (1994)CrossRefGoogle Scholar
  2. 2.
    Andersen, H.R., Winskel, G.: Compositional checking of satisfaction. Formal Methods in System Design 1(4), 323–354 (1992)zbMATHCrossRefGoogle Scholar
  3. 3.
    Barringer, H., Kuiper, R., Pnueli, A.: Now you may compose temporal logic specifications. In: ACM Symposium on Theory of Computing (STOC 1984), pp. 51–63. ACM Press, Baltimore (1984)CrossRefGoogle Scholar
  4. 4.
    Bloom, B., Fokkink, W.J., van Glabbeek, R.J.:: Precongruence formats for decorated trace semantics. ACM Transactions on Computational Logic (2003) (to appear)Google Scholar
  5. 5.
    Bol, R., Groote, J.F.: The meaning of negative premises in transition system specifications. Journal of the ACM 43(5), 863–914 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31(3), 560–599 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 502–513. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    van Glabbeek, R.J.: The linear time – branching time spectrum I: The semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 1, pp. 3–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  9. 9.
    Groote, J.F.: Transition system specifications with negative premises. Theoretical Computer Science 118(2), 263–299 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, completeness. Journal of Computer and System Sciences 25(2), 144–170 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hennessy, M.C.B., Milner, R.: Algebraic laws for non-determinism and concurrency. Journal of the ACM 32(1), 137–161 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hennessy, M.C.B., Stirling, C.: The power of the future perfect in program logics. Information and Control 67(1-3), 23–52 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27(3), 333–354 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Larsen, K.G.: Context-Dependent Bisimulation between Processes. PhD thesis, University of Edinburgh, Edinburgh (1986)Google Scholar
  15. 15.
    Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. Journal of Logic and Computation 1(6), 761–795 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  17. 17.
    Milner, R.: A modal characterization of observable machine-behaviour. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer, Heidelberg (1981)Google Scholar
  18. 18.
    Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science 25(3), 267–310 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark (1981)Google Scholar
  20. 20.
    Pnueli, A.: The temporal logic of concurrent programs. Theoretical Computer Science 13, 45–60 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    De Simone, R.: Higher-level synchronising devices in Meije–SCCS. Theoretical Computer Science 37(3), 245–267 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Stirling, C.: A proof-theoretic characterization of observational equivalence. Theoretical Computer Science 39(1), 27–45 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Stirling, C.: A complete compositional modal proof system for a subset of CCS. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 475–486. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  24. 24.
    Stirling, C.: A complete modal proof system for a subset of SCCS. In: Nivat, M., Floyd, C., Thatcher, J., Ehrig, H. (eds.) CAAP 1985 and TAPSOFT 1985. LNCS, vol. 185, pp. 253–266. Springer, Heidelberg (1985)Google Scholar
  25. 25.
    Stirling, C.: Modal logics for communicating systems. Theoretical Computer Science 49(2-3), 311–347 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Winskel, G.: A complete proof system for SCCS with modal assertions. Fundamenta Informaticae IX, 401–420 (1986)MathSciNetGoogle Scholar
  27. 27.
    Winskel, G.: On the compositional checking of validity (extended abstract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 481–501. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wan Fokkink
    • 1
    • 2
  • Rob van Glabbeek
    • 1
  • Paulien de Wind
    • 2
  1. 1.Department of Software EngineeringCWIAmsterdamThe Netherlands
  2. 2.Department of Theoretical Computer ScienceVrije Universiteit AmsterdamAmsterdam HVThe Netherlands

Personalised recommendations