Dimension- and Time-Hierarchies for Small Time Bounds

  • Martin Kutrib
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2751)


Recently, infinite time hierarchies of separated complexity classes in the range between real time and linear time have been shown. This result is generalized to arbitrary dimensions. Furthermore, for fixed time complexities of the form id+r, where r ∈ o(id) is a sublinear function, proper dimension hierarchies are presented. The hierarchy results are established by counting arguments. For an equivalence relation and a family of witness languages the number of induced equivalence classes is compared to the number of equivalence classes distinguishable by the model in question. By contradiction the properness of the inclusions is proved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity I. Springer, Berlin (1988)zbMATHGoogle Scholar
  2. 2.
    Book, R.V., Greibach, S.A.: Quasi-realtime languages. Math. Systems Theory 4, 97–111 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Buchholz, T., Klein, A., Kutrib, M.: Iterative arrays with small time bounds. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 243–252. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state machines. IEEE Trans. Comput. C-18, 349–365 (1969)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fürer, M.: The tight deterministic time hierarchy. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing (STOC 1982), pp. 8–16 (1982)Google Scholar
  6. 6.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 285–306 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hennie, F.C.: One-tape, off-line turing machine computations. Inform. Control 8, 553–578 (1965)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hennie, F.C.: On-line turing machine computations. IEEE Trans. Elect. Comput. EC-15, 35–44 (1966)CrossRefGoogle Scholar
  9. 9.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Language,and Computation. Addison-Wesley, Reading (1979)Google Scholar
  10. 10.
    Klein, A., Kutrib, M.: Deterministic Turing machines in the range between real-time and linear-time. Theoret. Comput. Sci. 289, 253–275 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kobayashi, K.: On proving time constructibility of functions. Theoret. Comput. Sci. 35, 215–225 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Loui, M.C.: Simulations among multidimensional turing machines. Theoret. Comput. Sci. 21, 145–161 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Michel, P.: An NP-complete language accepted in linear time by a one-tape Turing machine. Theoret. Comput. Sci. 85, 205–212 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Paul, W.J.: On time hierarchies. J. Comput. System Sci. 19, 197–202 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Paul, W., Seiferas, J.I., Simon, J.: An information-theoretic approach to time bounds for on-line computation. J. Comput. System Sci. 23, 108–126 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. Assoc. Comput. Mach. 26, 361–381 (1979)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Reischuk, R.: Einführung in die Komplexitätstheorie. Teubner, Stuttgart (1990)zbMATHGoogle Scholar
  18. 18.
    Rosenberg, A.L.: Real-time definable languages. J. Assoc. Comput. Mach. 14, 645–662 (1967)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Stoß, H.-J.: Zwei-Band Simulation von Turingmaschinen. Computing 7, 222–235 (1971)zbMATHCrossRefGoogle Scholar
  20. 20.
    Wagner, K., Wechsung, G.: Computational Complexity. Reidel, Dordrecht (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Martin Kutrib
    • 1
  1. 1.Institute of InformaticsUniversity of GiessenGiessenGermany

Personalised recommendations