On Exact and Approximation Algorithms for Distinguishing Substring Selection

  • Jens Gramm
  • Jiong Guo
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2751)


The NP-complete Distinguishing Substring Selection problem (DSSS for short) asks, given a set of “good” strings and a set of “bad” strings, for a solution string which is, with respect to Hamming metric, “away” from the good strings and “close” to the bad strings.

Studying the parameterized complexity of DSSS, we show that DSSS is W[1]-hard with respect to its natural parameters. This, in particular, implies that a recently given polynomial-time approximation scheme (PTAS) by Deng et al. cannot be replaced by a so-called efficient polynomial-time approximation scheme (EPTAS) unless an unlikely collapse in parameterized complexity theory occurs.

By way of contrast, for a special case of DSSS, we present an exact fixed-parameter algorithm solving the problem efficiently. In this way, we exhibit a sharp border between fixed-parameter tractability and intractability results.


Algorithms and complexity parameterized complexity approximation algorithms exact algorithms computational biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamson, K.: Generalized string matching. SIAM Journal on Computing 16(6), 1039–1051 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alber, J., Gramm, J., Niedermeier, R.: Faster exact solutions for hard problems: a parameterized point of view. Discrete Mathematics 229(1-3), 3–27 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k mismatches. In: Proc. of 11th ACM-SIAM SODA, pp. 794–803 (2000)Google Scholar
  4. 4.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation – Combinatorial Optimization Problems and their Approximability Properties. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  5. 5.
    Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation schemes. Information Processing Letters 64(4), 165–171 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: A PTAS for Distinguishing (Sub)string Selection. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 740–751. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G.: Parameterized complexity for the skeptic (invited paper). In: Proc. of 18th IEEE Conference on Computational Complexity (July 2003)Google Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Evans, P.A., Smith, A., Wareham, H.T.: The parameterized complexity of p-center approximate substring problems. Technical report TR01-149, Faculty of Computer Science, University of New Brunswick, Canada (2001)Google Scholar
  10. 10.
    Fellows, M.R.: Parameterized complexity: the main ideas and connections to practical computing. In: Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547, pp. 51–77. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of Closest Substring and related problems. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 262–273. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Frances, M., Litman, A.: On covering problems of codes. Theory of Computing Systems 30, 113–119 (1997)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for Closest String and related problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. In: Proc. of 10th ACM-SIAM SODA, pp. 633–642 (1999)Google Scholar
  15. 15.
    Li, M., Ma, B., Wang, L.: On the Closest String and Substring Problems. Journal of the ACM 49(2), 157–171 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, M., Ma, B., Wang, L.: Finding similar regions in many sequences. Journal of Computer and System Sciences 65(1), 73–96 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jens Gramm
    • 1
  • Jiong Guo
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenFed. Rep. of Germany

Personalised recommendations