Periodic Multisorting Comparator Networks

  • Marcin Kik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2751)


We present a family of periodic comparator networks that transform the input so that it consists of a few sorted subsequences. The depths of the networks range from 4 to 2log n while the number of sorted subsequences ranges from 2log n to 2. They work in time clog2 n + O(log n) with 4 ≤ c ≤ 12, and the remaining constants are also suitable for practical applications. So far, known periodic sorting networks of a constant depth that run in time O(log2 n) (a periodic version of AKS network [7]) are impractical because of complex structure and very large constant factor hidden by big “Oh”.


sorting comparator networks parallel algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combinatorica 3, 1–19 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Batcher, K.E.: Sorting networks and their applications. In: Proceedings of 32nd AFIPS, pp. 307–314 (1968)Google Scholar
  3. 3.
    Dowd, M., Perl, Y., Rudolph, L., Saks, M.: The periodic balanced sorting network. Journal of the ACM 36, 738–757 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kik, M.: Periodic correction networks. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 471–478. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Kik, M., Kutyłowski, M., Stachowiak, G.: Periodic constant depth sorting network. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 201–212. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Kutyłowski, M., Loryś, K., Oesterdiekhoff, B.: Periodic merging networks. In: Proceedings of the 7th ISAAC, pp. 336–345 (1996)Google Scholar
  7. 7.
    Kutyłowski, M., Loryś, K., Oesterdiekhoff, B., Wanka, R.: Fast and feasible periodic sorting networks. In: Proceedings of the 55th IEEE-FOCS (1994)Google Scholar
  8. 8.
    Knuth, D.E.: The art of Computer Programming. Sorting and Searching, vol. 3. Addison-Wesley, Reading (1973)Google Scholar
  9. 9.
    Lee, D.-L., Batcher, K.E.: A multiway merge sorting network. IEEE Transactions on Parallel and Distributed Systems 6, 211–215 (1995)CrossRefGoogle Scholar
  10. 10.
    Schwiegelshohn, U.: A short-periodic two-dimensional systolic sorting algorithm. In: IEEE International Conference on Systolic Arrays, pp. 257–264 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marcin Kik
    • 1
  1. 1.Institute of MathematicsWrocław University of TechnologyWrocławPoland

Personalised recommendations