Advertisement

VAD for VoIP Using Cepstrum

  • R. Venkatesha Prasad
  • H. S. Jamadagni
  • Abhijeet Sangwan
  • M. C. Chiranth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2720)

Abstract

As telephony services are being supported on Internet the focus is now on multiplexing many speech streams by exploiting the speech characteristics. The multiplexing gain is an important factor when applications such as teleconference service are ported on to the Internet. Here we discuss Voice Activity Detection (VAD) for Voice over Internet Protocol (VoIP) based on Cepstrum. VAD aids in saving bandwidth of a voice session. Such a scheme would be implemented in the application layer thus VAD is independent of the lower layers. The standard codecs would inherently have the VAD algorithms to reduce the bandwidth. However they are costly and computationally complex. In this paper, we compare the quality of speech, level of compression and computational complexity of our method of Cepstrum based VAD with the standard GSM and ITU-T G.729 codecs. Bandwidth reduction is achieved by not transmitting the non-speech packets. Our algorithm adapts to the varying background noise.

Keywords

Speech Quality Voice Over Internet Protocol Speech Characteristic Voice Activity Detection Speech Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sangwan, A., Chiranth, M.C., Jamadagni, H.S., Rahul Sah, R., Prasad, V., Gaurav, V.: VAD Techniques for Real-Time Speech Transmission on the Internet. In: The Fifth International Conference on High-Speed Networks and Multimedia Communications HSNMC 2002, Jeju Island, S. KOREA, July 3-5 (2002)Google Scholar
  2. 2.
    Sangwan, A., Chiranth, M.C., Shah, R., Gaurav, V., Venkatesha Prasad , R.: Voice Activity Detection for VoIP- Time and Frequency domain Solutions. In: Tenth annual IEEE Symposium on Multimedia Communications and Signal Processing, Bangalore, pp. 20–24 (November 2001)Google Scholar
  3. 3.
    Flood, J.E.: Telecommunications Switching - Traffic and Networks. Prentice Hall, IndiaGoogle Scholar
  4. 4.
    Sohn, J., Kim, N.S., Sung, W.: A statistical model-based voice activity detection. IEEE Signal Processing Letters 6(1) (January 1999)Google Scholar
  5. 5.
    Feher, K.: Wireless Digital Communications. Prentice Hall, India (2001)Google Scholar
  6. 6.
    El-Maleh, K., Kabal, P.: Comparison of Voice Activity Detection Algorithms for Wireless Personal Communications Systems. In: IEEE Canadian Conference on Electrical and Computer engineering, pp. 470–473 (May 1997)Google Scholar
  7. 7.
    Pollak, P., Sovka, P., Uhlir, J.: Cepstral Speech/Pause Detectors. In: proc. of IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, Greece, pp. 388–391 (June 1995)Google Scholar
  8. 8.
    Pollak, P., Sovka, P., Uhlir, J.: Noise Suppression System for a Car. In: proc. of the Third European Conference on Speech, Communication and Technology -EUROSPEECH 1993, pp. 1073–1076 (September 1993)Google Scholar
  9. 9.
    RTP, Real Time Protocol, RFC (1889), http://www.ietf.org/rfc/rfc1889.txt
  10. 10.
    Pracht, S., Hardman, D.: Agilent Technologies - Voice Quality in Converging Telephony and IP Networks. Ciscoworld Magazine - White Paper (2001)Google Scholar
  11. 11.
    Cho, Y.D., Al-Naimi, K., Kondoz, A.: Mixed Decision-Based Noise Adaption for Speech Enhancement. IEEE Electronics Letters Online No. 20010368, Febraury 6 (2001)Google Scholar
  12. 12.
    Venkatesha Prasad, R., Sangwan, A., Jamadagni, H.S., Chiranth, M.C., Sah, R., Gaurav, V.: Comparison of Voice Activity Detection Algorithms for VoIP. In: The Seventh IEEE Symposium on Computers and Communications, ISCC 2002, Taormina, Sicily, ITALY (July 2002)Google Scholar
  13. 13.
    Muralishankar, R., Ramakrishnan, A.G.: DCT Based Pseudo Complex Cepstrum. In: ICASSP, Orlando, Florida, vol. 1, pp. 521–524 (May 2002)Google Scholar
  14. 14.
    Swanson, M.R., Critchlo, T., Kessler, R., Stoller, L.B.: The Design of the Schizophrenic Workstation System. In: The Proceedings of the Third Usenix Mach Symposium (April 1993)Google Scholar
  15. 15.
    Gibson, J.D. (ed.): Multimedia Communications - Directions & Innovations. Academic Press, London (2001)Google Scholar
  16. 16.
    Enderes, T., Khoo, S.C., Somerville, C.A., Samaras, K.: Somerville Kostas Samaras. Mobile Networks and Applications 7(2), 153–161 (2002)Google Scholar
  17. 17.
    http://www.nuntius.com/solutions11.html (ITU-T recommended vocoders)
  18. 18.
  19. 19.
    Zhang, J., Ward, W., Pellom, B.: Phone Based Voice Activity Detection Using Online Bayesian Adaptation with Conjugate Normal Distributions. In: ICASSP 2002, Orlando Florida (May 2002)Google Scholar
  20. 20.
    Gold, B., Morgan, N.: Speech and Audio Signal Processing. John Wiley Publications, Chichester Google Scholar
  21. 21.
    Sangwan, A., Jamadagni, H.S., Chiranth, M.C., Rahul Sah, R., Prasad, V., Gaurav, V.: Second and Third Order Adaptable Threshold for VAD. In: VoIP ICSP, Beijing, pp. 1693–1696 (August 2002)Google Scholar
  22. 22.
    El-Maleh, K., Kabal, P.: Natural quality background noise coding using residual substitution. In: EUROSPEECH, Budapest, vol. 5, pp. 2359–2362 (September 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Venkatesha Prasad
    • 1
  • H. S. Jamadagni
    • 1
  • Abhijeet Sangwan
    • 2
  • M. C. Chiranth
    • 2
  1. 1.CEDTIndian Institute of ScienceBangaloreIndia
  2. 2.Department of E&CPESITBangaloreIndia

Personalised recommendations