Advertisement

A Symbolic Approach to Predicate Abstraction

  • Shuvendu K. Lahiri
  • Randal E. Bryant
  • Byron Cook
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2725)

Abstract

Predicate abstraction is a useful form of abstraction for the verification of transition systems with large or infinite state spaces. One of the main bottlenecks of this approach is the extremely large number of decision procedures calls that are required to construct the abstract state space. In this paper we propose the use of a symbolic decision procedure and its application for predicate abstraction. The advantage of the approach is that it reduces the number of calls to the decision procedure exponentially and also provides for reducing the re-computations inherent in the current approaches. We provide two implementations of the symbolic decision procedure: one based on BDDs which leverages the current advances in early quantification algorithms, and the other based on SAT-solvers. We also demonstrate our approach with quantified predicates for verifying parameterized systems. We illustrate the effectiveness of this approach on benchmarks from the verification of microprocessors, communication protocols, parameterized systems, and Microsoft Windows device drivers.

Keywords

Decision Procedure Boolean Variable Boolean Formula Symbolic Model Check Predicate Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation (PLDI 2001), Snowbird, Utah, May 2001. SIGPLAN Notices, vol. 36(5) (2001)Google Scholar
  2. 2.
    Barrett, C., Dill, D., Levitt, J.: Validity checking for combinations of theories with equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Barrett, C., Dill, D., Stump, A.: Checking satisfiability of first-order formulas by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 236. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35(8) (August 1986)Google Scholar
  5. 5.
    Bryant, R.E., German, S., Velev, M.N.: Exploiting positive equality in a logic of equality with uninterpreted functions. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 470–482. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Burch, J.R., Dill, D.L.: Automated verification of pipelined microprocessor control. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Kroening, D., Chauhan, P.: Fixpoint computation for circuits using Symbolic Simulation and SAT (2003) (in Preparation)Google Scholar
  10. 10.
    Cousot, D., Cousot, R.: Abstract interpretation: a unified lattice model for the static analysis of programs by construction or approximation of fixpoints. In: Proceedings of Fourth Annual Symposium on Principles of Programming Languages, POPL 1977 (1977)Google Scholar
  11. 11.
    Das, S., Dill, D.: Successive approximation of abstract transition relations. In: IEEE Symposium of Logic in Computer Science(LICS 2001) (June 2001)Google Scholar
  12. 12.
    Das, S., Dill, D., Park, S.: Experience with predicate abstraction. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999, vol. 1633, pp. 160–171. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of programming languages, POPL 2002 (2002)Google Scholar
  14. 14.
    Geist, D., Beer, I.: Efficient model checking by automated ordering of transition relation partitions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Lahiri, S.K., Pixley, C., Albin, K.: Experience with term level modeling and verification of the MCORE microprocessor core. In: Proc. IEEE High Level Design Validation and Test (HLDVT 2001) (November 2001)Google Scholar
  17. 17.
    Lahiri, S.K., Seshia, S.A., Bryant, R.E.: Modeling and verification of out-of-order microprocessors in UCLID. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: 38th Design Automation Conference, DAC 2001 (2001)Google Scholar
  20. 20.
    Namjoshi, K., Kurshan, R.: Syntactic program transformations for automatic abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)Google Scholar
  21. 21.
    Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 82. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Saidi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Strichmann, O.: On solving Presburger and linear arithmetic with SAT. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Strichmann, O., Seshia, S.A., Bryant, R.E.: Deciding separation formulas with sat. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 209. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Velev, M.N., Bryant, R.E.: Formal Verification of Superscalar Microprocessors with Multicycle Functional Units, Exceptions and Branch Predication. In: 37th Design Automation Conference (DAC 2000) (June 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Shuvendu K. Lahiri
    • 1
  • Randal E. Bryant
    • 1
  • Byron Cook
    • 2
  1. 1.Carnegie Mellon UniversityPittsburgh
  2. 2.Microsoft CorporationRedmond

Personalised recommendations