Interpolation and SAT-Based Model Checking

  • K. L. McMillan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2725)


We consider a fully SAT-based method of unbounded symbolic model checking based on computing Craig interpolants. In benchmark studies using a set of large industrial circuit verification instances, this method is greatly more efficient than BDD-based symbolic model checking, and compares favorably to some recent SAT-based model checking methods on positive instances.


Model Check Conjunctive Normal Form Boolean Formula Symbolic Model Check Bound Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Artho, C., Biere, A., Schuppan, V.: Liveness checking as safety checking. In: Formal Methods for Industrial Critical Systems (FMICS 2002) (July 2002)Google Scholar
  2. 2.
    Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT-solvers. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, p. 411. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Baumgartner, J., Kuehlmann, A., Abraham, J.: Property checking via structural analysis. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 151–165. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Bjesse, P.: Symbolic model checking with sets of states represented as formulas. Technical Report CS-1999-100, Department of Computer Science, Chalmers technical university (March 1999)Google Scholar
  6. 6.
    Bjesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an alpha microprocessor using satisfiability solvers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 454. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35(8) (1986)Google Scholar
  8. 8.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model checking: 1020 states and beyond. In: Proceedings of the Fifth Annual Symposium on Logic in Computer Science (June 1990)Google Scholar
  9. 9.
    Coudert, O., Berthet, C., Madre, J.-C.: Verification of synchronous sequential machines based on symbolic execution. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems, International Workshop, Grenoble, France. LNCS, vol. 407, Springer, Heidelberg (1989)Google Scholar
  10. 10.
    Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits of bounded model checking at an industrial setting. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic 22(3), 250–268 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goldberg, E., Novikov, Y.: BerkMin: a fast and robust SAT-solver. In: DATE 2002, pp. 142–149 (2002)Google Scholar
  13. 13.
    Gupta, A., Yang, Z., Ashar, P., Gupta, A.: SAT-based image computation with application in reachability analysis. In: FMCAD 2000, pp. 354–371 (2000)Google Scholar
  14. 14.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, Washington, D.C, pp. 1–33. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Moskewicz, M.W., Madigan, C.F., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)Google Scholar
  19. 19.
    Pnueli, A., Lichtenstein, O.: Checking that finite state concurrent programs satisfy their linear specification. In: Principles of Programming Languages (POPL 1985), pp. 97–107 (1985)Google Scholar
  20. 20.
    Plaisted, D., Greenbaum, S.: A structure preserving clause form translation. Journal of Symbolic Computation 2, 293–304 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic 62(2), 981–998 (1997)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Sheeran, M., Singh, S., Stalmarck, G.: Checking safety properties using induction and a SAT-solver. In: Formal Methods in Computer Aided Design (2000)Google Scholar
  23. 23.
    Silva, J.P.M., Sakallah, K.A.: GRASP–a new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design (November 1996)Google Scholar
  24. 24.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Logic in Computer Science (LICS 1986), pp. 322–331 (1986)Google Scholar
  25. 25.
    Williams, P.F., Biere, A., Clarke, E.M., Gupta, A.: Combining decision diagrams and SAT procedures for efficient symbolic model checking. In: Computer Aided Verification, pp. 124–138 (2000)Google Scholar
  26. 26.
    Zhang, L., Malik, S.: Validating sat solvers using an independent resolutionbased checker: Practical implementations and other applications. In: DATE 2003, pp. 880–885 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • K. L. McMillan
    • 1
  1. 1.Cadence Berkeley Labs 

Personalised recommendations