We investigate a simple modal logic of probability with a unary modal operator expressing that a proposition is more probable than its negation. Such an operator is not closed under conjunction, and its modal logic is therefore non-normal. Within this framework we study the relation of probability with other modal concepts: belief and action.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. Journal of the ACM 41, 340–367 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hamblin, C.: The modal ‘probably’. Mind 68, 234–240 (1959)CrossRefGoogle Scholar
  3. 3.
    Burgess, J.P.: Probability logic. J. of Symbolic Logic 34, 264–274 (1969)MATHCrossRefGoogle Scholar
  4. 4.
    Walley, P., Fine, T.L.: Varieties of modal (classificatory) and comparative probability. Synthese 41, 321–374 (1979)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Halpern, J., Rabin, M.: A logic to reason about likelihood. Artificial Intelligence J. 32, 379–405 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Halpern, J., McAllester, D.: Likelihood, probability, and knowledge. Computational Intelligence 5, 151–160 (1989)CrossRefGoogle Scholar
  7. 7.
    Fattorosi-Barnaba, M., de Caro, F.: Graded modalities I. Studia Logica 44, 197–221 (1985)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    van der Hoek, W.: On the semantics of graded modalities. J. of Applied Nonclassical Logics (JANCL) 2 (1992)Google Scholar
  9. 9.
    Hajek, P.: Metamathematics of fuzzy logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  10. 10.
    Godo, L., Hajek, P., Esteva, F.: A fuzzy modal logic for belief functions. In: Proc. 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 723–732 (2001)Google Scholar
  11. 11.
    Fariñas del Cerro, L., Herzig, A.: A modal analysis of possibility theory. In: Kruse, R., Siegel, P. (eds.) ECSQAU 1991 and ECSQARU 1991. LNCS, vol. 548, pp. 58–62. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Fariñas del Cerro, L., Herzig, A.: A modal analysis of possibility theory (invited paper). In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991. LNCS (LNAI), vol. 535, pp. 11–18. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Lewis, D.: Counterfactuals. Basil Blackwell, Oxford (1973)Google Scholar
  14. 14.
    Chellas, B.: Modal logic: An introduction. Cambridge University Press, Cambridge (1980)MATHGoogle Scholar
  15. 15.
    Hintikka, J.K.K.: Knowledge and belief. Cornell University Press, Ithaca (1962)Google Scholar
  16. 16.
    Harel, D.: Dynamic logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 497–604. D. Reidel, Dordrecht (1984)Google Scholar
  17. 17.
    Herzig, A., Lang, J., Longin, D., Polacsek, T.: A logic for planning under partial observability. In: Proc. Nat. (US) Conf. on Artificial Intelligence (AAAI 2000), Austin, Texas (2000)Google Scholar
  18. 18.
    Herzig, A., Longin, D.: Sensing and revision in a modal logic of belief and action. In: van Harmelen, F. (ed.) Proc. ECAI 2002, pp. 307–311. IOS Press, Amsterdam (2002)Google Scholar
  19. 19.
    Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J.: Iterated belief change in the situation calculus. In: Proc. KR 2000, pp. 527–538 (2000)Google Scholar
  20. 20.
    Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge (1988)Google Scholar
  21. 21.
    Reiter, R.: The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380. Academic Press, San Diego (1991)Google Scholar
  22. 22.
    Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming language for dynamic domains. J. of Logic Programming (1997) special issue on reasoning about action and change (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Andreas Herzig
    • 1
  • Dominique Longin
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse (CNRS – UMR 5505)Toulouse cedex 04France

Personalised recommendations