Probabilistic Lexicographic Entailment under Variable-Strength Inheritance with Overriding

  • Thomas Lukasiewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2711)


In previous work, I have presented approaches to nonmonotonic probabilistic reasoning, which is a probabilistic generalization of default reasoning from conditional knowledge bases. In this paper, I continue this exciting line of research. I present a new probabilistic generalization of Lehmann’s lexicographic entailment, called lex λ -entailment, which is parameterized through a value λ ∈ [0,1] that describes the strength of the inheritance of purely probabilistic knowledge. Roughly, the new notion of entailment is obtained from logical entailment in model-theoretic probabilistic logic by adding (i) the inheritance of purely probabilistic knowledge of strength λ, and (ii) a mechanism for resolving inconsistencies due to the inheritance of logical and purely probabilistic knowledge. I also explore the semantic properties of lex λ -entailment.


Probabilistic Logic Logical Constraint Classical Counterpart Probabilistic Generalization Default Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amarger, S., Dubois, D., Prade, H.: Constraint propagation with imprecise conditional probabilities. In: Proceedings UAI 1991, pp. 26–34. Morgan Kaufmann, San Francisco (1991)Google Scholar
  2. 2.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proceedings IJCAI 1993, pp. 640–645 (1993)Google Scholar
  3. 3.
    Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic logic. In: Proceedings KR 1992, pp. 673–684. Morgan Kaufmann, San Francisco (1992)Google Scholar
  4. 4.
    Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artif. Intell. 92(1-2), 259–276 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Biazzo, V., Gilio, A.: Ageneralization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. Int. J. Approx. Reasoning 24, 251–272 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under coherence: Complexity and algorithms. In: Proceedings ISIPTA 2001, pp. 51–61 (2001)Google Scholar
  7. 7.
    Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P. Journal of Applied Non-Classical Logics 12(2), 189–213 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boole, G.: An Investigation of the Laws of Thought, on which are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberley, London (1854) (Reprint: Dover Publications, NewYork, 1958)Google Scholar
  9. 9.
    Dubois, D., Prade, H.: Possibilistic logic, preferential models, non-monotonicity and related issues. In: Proceedings IJCAI 1991, pp. 419–424. Morgan Kaufmann, San Francisco (1991)Google Scholar
  10. 10.
    Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relationships. IEEE Trans. Syst. Man Cybern. 24(12), 1724–1740 (1994)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Eiter, T., Lukasiewicz, T.: Default reasoning from conditional knowledge bases: Complexity and tractable cases. Artif. Intell. 124(2), 169–241 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87, 78–128 (1990)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. J. ACM 48(4), 648–685 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Frisch, A.M., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69, 93–122 (1994)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Geffner, H.: Default Reasoning: Causal and Conditional Theories. MIT Press, Cambridge (1992)Google Scholar
  16. 16.
    Gilio, A.: Probabilistic consistency of conditional probability bounds. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 200–209. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Gilio, A.: Probabilistic reasoning under coherence in System P. Ann. Math. Artif. Intell. 34(1-3), 5–34 (2002)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Giugno, R., Lukasiewicz, T.: P-\(\mathcal{SHOQ}(D)\): A probabilistic extension of \(\mathcal{SHOQ}(D)\) for probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 14(1), 167–207 (1990)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kyburg Jr., H.E.: The Logical Foundations of Statistical Inference. D. Reidel, Dordrecht (1974)MATHGoogle Scholar
  21. 21.
    Kyburg Jr., H.E.: The reference class. Philos. Sci. 50, 374–397 (1983)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lamarre, P.: Apromenade from monotonicity to non-monotonicity following a theorem prover. In: Proceedings KR 1992, pp. 572–580. Morgan Kaufmann, San Francisco (1992)Google Scholar
  23. 23.
    Lehmann, D.: What does a conditional knowledge base entail? In: Proceedings KR 1989, pp. 212–222. Morgan Kaufmann, San Francisco (1989)Google Scholar
  24. 24.
    Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–82 (1995)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lukasiewicz, T.: Local probabilistic deduction from taxonomic and probabilistic knowledgebases over conjunctive events. Int. J. Approx. Reasoning 21(1), 23–61 (1999)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res. 10, 199–241 (1999)MATHMathSciNetGoogle Scholar
  27. 27.
    Lukasiewicz, T.: Probabilistic logic programming under inheritance with overriding. In: Proceedings UAI 2001, pp. 329–336. Morgan Kaufmann, San Francisco (2001)Google Scholar
  28. 28.
    Lukasiewicz, T.: Probabilistic logic programming with conditional constraints. ACM Trans. on Computational Logic (TOCL) 2(3), 289–339 (2001)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Lukasiewicz, T.: Nonmonotonic probabilistic logics between model-theoretic probabilistic logic and probabilistic logic under coherence. In: Proceedings NMR 2002, pp. 265–274 (2002)Google Scholar
  30. 30.
    Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann. Math. Artif. Intell. 34(1-3), 35–88 (2002)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Lukasiewicz, T.: Nonmonotonic probabilistic reasoning under variable-strength inheritance with overriding. Technical Report INFSYS RR-1843-03-02, Institut für Informationssysteme, TU Wien (2003)Google Scholar
  32. 32.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–88 (1986)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Pearl, J.: System Z: A natural ordering of defaults with tractable applications to default reasoning. In: Proceedings TARK 1990, pp. 121–135. Morgan Kaufmann, San Francisco (1990)Google Scholar
  34. 34.
    Pollock, J.L.: Nomic Probabilities and the Foundations of Induction. Oxford University Press, Oxford (1990)Google Scholar
  35. 35.
    Reichenbach, H.: Theory of Probability. University of California Press, Berkeley (1949)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations