On Iterated Revision in the AGM Framework

  • A. Herzig
  • S. Konieczny
  • L. Perrussel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2711)

Abstract

While AGM belief revision identifies belief states with sets of formulas, proposals for iterated revision are usually based on more complex belief states. In this paper we investigate within the AGM framework several postulates embodying some aspects of iterated revision. Our main results are negative: when added to the AGM postulates, our postulates force revision to be maxichoice (whenever the new piece of information is inconsistent with the current beliefs the resulting belief set is maximal). We also compare our results to revision operators with memory and we investigate some postulates proposed in this framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alchourrón, C.E., Makinson, D.: The logic of theory change: Contraction functions and their associated revision functions. Theoria 48, 14–37 (1982)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Benferhat, S., Dubois, D., Papini, O.: A sequential reversible belief revision method based on polynomials. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI 1999), pp. 733–738 (1999)Google Scholar
  4. 4.
    Booth, R.: On the logic of iterated non-prioritised revision. In: Workshop on Conditionals, Information and Inference, Hagen, Germany (2002)Google Scholar
  5. 5.
    Dalal, M.: Investigations into a theory of knowledge base revision: preliminary report. In: Proceedings of the National Conference on Artificial Intelligence (AAAI 1988), pp. 475–479 (1988)Google Scholar
  6. 6.
    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. In: Morgan Kaufmann (ed.) Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1994 Conference (TARK 1994), pp. 5–23 (1994)Google Scholar
  7. 7.
    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence 89, 1–29 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Freund, M., Lehmann, D.: Belief revision and rational inference. Technical Report TR-94-16, Institute of Computer Science, The Hebrew University of Jerusalem (1994)Google Scholar
  9. 9.
    Gärdenfors, P.: Knowledge in flux. MIT Press, Cambridge (1988)Google Scholar
  10. 10.
    Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17, 157–180 (1988)Google Scholar
  11. 11.
    Hansson, S.O.: A textbook of belief dynamics. Kluwer Academic Press, Dordrecht (1999)MATHGoogle Scholar
  12. 12.
    Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52, 263–294 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Konieczny, S., Pino Pérez, R.: A framework for iterated revision. Journal of Applied Non-Classical Logics 10(3-4), 339–367 (2000)MATHMathSciNetGoogle Scholar
  14. 14.
    Konieczny, S., Pino Pérez, R.: Some operators for iterated revision. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 498–509. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Lehmann, D.: Belief revision, revised. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1534–1540 (1995)Google Scholar
  16. 16.
    Liberatore, P.: The complexity of iterated belief revision. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 276–290. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Meyer, T.: Basic infobase change. Studia Logica 67, 215–242 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nayak, A.C.: Iterated belief change based on epistemic entrenchment. Erkenntnis 41, 353–390 (1994)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Nebel, B.: Syntax-based approaches to belief revision. In: Gärdenfors, P. (ed.) Belief revision. Journal of Cambridge Tracts in Theoretical Computer Science, vol. 29, pp. 52–88. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  20. 20.
    Papini, O.: Iterated revision operations stemming from the history of an agent’s observations. In: Rott, H., Williams, M.A. (eds.) Frontiers in Belief revision, pp. 279–301. Kluwer, Dordrecht (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Herzig
    • 1
  • S. Konieczny
    • 1
  • L. Perrussel
    • 1
  1. 1.Institut de Recherche en Informatique de ToulouseToulouseFrance

Personalised recommendations