Applications of Latent Class Analysis in Social Science Research

  • Jeroen K. Vermunt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2711)


An overview is provided of recent developments in the use of latent class (LC) models in social science research. Special attention is paid to the application of LC analysis as a factor-analytic tool and as a tool for random-effects modeling. Furthermore, an extension of the LC model to deal with nested data structures is presented.


  1. 1.
    Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley, New York (2002)Google Scholar
  2. 2.
    Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics 41, 164–171 (1970)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Clogg, C.C., Goodman, L.A.: Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association 79, 762–771 (1984)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Formann, A.K.: Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association 87, 476–486 (1992)CrossRefGoogle Scholar
  5. 5.
    Goldstein, H.: Multilevel statistical models. Halsted Press, New York (1995)Google Scholar
  6. 6.
    Goodman, L.A.: The analysis of systems of qualitative variables when some of the variables are unobservable: Part I – A modified latent structure approach. American Journal of Sociology 79, 1179–1259 (1974)CrossRefGoogle Scholar
  7. 7.
    Hagenaars, J.A.: Loglinear Models with Latent Variables, Sage University Paper. Sage Publications, Newbury Park (1993)Google Scholar
  8. 8.
    Hagenaars, J.A., McCutcheon, A.L.: Applied Latent Class Analysis. Cambridge University Press, Cambridge (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Heinen, T.: Latent Class and Discrete Latent Trait Models: Similarities and Differences. Sage Publications, Thousand Oaks (1996)Google Scholar
  10. 10.
    Kamakura, W.A., Wedel, M., Agrawal, J.: Concomitant variable latent class models for the external analysis of choice data. International Journal of Marketing Research 11, 464–541 (1994)Google Scholar
  11. 11.
    Lazarsfeld, P.F., Henry, N.W.: Latent Structure Analysis. Houghton Mill, Boston (1968)MATHGoogle Scholar
  12. 12.
    Magidson, J., Vermunt, J.K.: Latent class factor and cluster models, bi-plots and related graphical displays. Sociological Methodology 31, 223–264 (2001)CrossRefGoogle Scholar
  13. 13.
    McCutcheon, A.L.: Latent Class Analysis, Sage University Paper. Sage Publications, Newbury Park (1987)Google Scholar
  14. 14.
    McGrath, K., Waterton, J.: British social attitudes, 1983–1986 panel survey. London: Social and Community Planning Research, Technical Report (1986)Google Scholar
  15. 15.
    McLachlan, G.J., Peel, D.: Finite Mixture models. John Wiley & Sons, Inc., New York (2000)MATHCrossRefGoogle Scholar
  16. 16.
    Van Mierlo, H., Vermunt, J.K., Rutte, C.: Using individual level survey data to measure group constructs: A comparison of items with reference to the individual and to the group in a job design context (submitted for publication)Google Scholar
  17. 17.
    Vermunt, J.K.: Log-linear Models for Event Histories, QASS, vol. 8. Sage Publications, Thousand Oaks (1997)Google Scholar
  18. 18.
    Vermunt, J.K.: Multilevel latent class models, Sociological Methodology, 33 (to appear)Google Scholar
  19. 19.
    Vermunt, J.K.: The use restricted latent class models for defining and testing nonparametric and parametric IRT models. Applied Psychological Measurement 25, 283–294 (2001)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Vermunt, J.K., Magidson, J.: Latent GOLD 2.0 User’s Guide. Statistical Innovations Inc., Belmont (2000)Google Scholar
  21. 21.
    Vermunt, J.K., Magidson, J.: Addendum to the Latent GOLD User’s Guide: Upgrade Manual for Version 3.0. Statistical Innovations Inc., Belmont (2003)Google Scholar
  22. 22.
    Vermunt, J.K., Magidson, J.: Factor Analysis with Categorical Indicators: A Comparison Between Traditional and Latent Class Approaches. In: Van der Ark, A., Croon, M., Sijstma, K. (eds.) Advancements in Categorical Data Analysis. Erlbaum (to appear)Google Scholar
  23. 23.
    Vermunt, J.K., Van Dijk, L.: A nonparametric random-coefficients approach: the latent class regression model. Multilevel Modelling Newsletter 13, 6–13 (2001)Google Scholar
  24. 24.
    Wedel, M., DeSarbo, W.: Mixture regression models. In: Hagenaars, J., McCutcheon, A. (eds.) Applied Latent Class Analysis, pp. 366–382. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  25. 25.
    Zhang, N.L.: Hierarchical latent class models for cluster analysis. Journal of Machine Learning Research (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jeroen K. Vermunt
    • 1
  1. 1.Department of Methodology and StatisticsTilburg UniversityTilburgThe Netherlands

Personalised recommendations