Applying Numerical Trees to Evaluate Asymmetric Decision Problems

  • Manuel Gómez
  • Andrés Cano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2711)


This paper describes some ideas for applying numerical trees in order to represent and solve asymmetric decision problems with influence diagrams (IDs). Constraint rules are used to represent the asymmetries between the variables of the ID. These rules will be transformed into numerical trees during the evaluation of the ID. The application of numerical trees can reduce the number of operations required to evaluate the ID. The paper also presents how numerical trees may be approximated, thereby enabling complex decision problems to be evaluated.


Influence diagrams asymmetric decision problems numerical trees probability trees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bielza, C., Shenoy, P.P.: A comparison of graphical techniques for asymmetric decision problems. Management Science 45(11), 1552–1569 (1999)MATHCrossRefGoogle Scholar
  2. 2.
    Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in Bayesian networks. In: Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1996), Portland, Oregon, pp. 115–123 (1996)Google Scholar
  3. 3.
    Cano, A., Moral, S.: Propagación exacta y aproximada mediante árboles de probabilidad en redes causales. In: Actas de la VII Conferencia de la Asociación Española para la Inteligencia Artificial, Málaga, pp. 635–644 (1997)Google Scholar
  4. 4.
    Cano, A., Moral, S., Salmerón, A.: Penniless propagation in join trees. International Journal of Intelligent Systems 15(11), 1027–1059 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    Cano, A., Moral, S., Salmerón, A.: Lazy evaluation in penniless propagation over join trees. Networks 39(4), 175–185 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Charnes, J.M., Shenoy, P.P.: A forward monte carlo method for solving influence diagrams using local computation. Technical report, School of Business. University of Kansas. Summerfield Hall. Lawrence, KS 66045-2003 (July 2000)Google Scholar
  7. 7.
    Covaliu, Z., Oliver, R.M.: Representation and solution of decision problems using sequential decision diagrams. Management science 41(12), 1860–1881 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    Demirer, R., Shenoy, P.P.: Sequential valuation networks: A new graphical technique for asymmetric decision problems. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 252–265. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Fung, R.M., Shachter, R.D.: Contingent influence diagrams. Technical report, Department of Engineering-Economic Systems, Stanford Univerity, Stanford, Calif. (1990)Google Scholar
  10. 10.
    Jensen, F.V.: Bayesian Networks and Decision Graphs. Statistics for Engineering and Information Science. Springer, New York (2001)Google Scholar
  11. 11.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statistics 22, 76–86 (1951)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lauritzen, S.L., Nilsson, D.: Representing and solving decision problems with limited information. Management Science 47(9), 1235–1251 (2001)CrossRefGoogle Scholar
  13. 13.
    Miller, H.J., Miller, W.A.: A comparison of approaches and implementations for automating decision analysis. Reliability Engineering and System Safety, 115–162 (1990)Google Scholar
  14. 14.
    Nielsen, T.D., Jensen, F.V.: Representing and solving asymmetric bayesian decision problems. In: Boutilier, C., Goldszmidt, M. (eds.) Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 416–425 (2000)Google Scholar
  15. 15.
    Olmsted, S.M.: On representing and solving decision problems. PhD thesis, Department of Engineering-Economic Systems, Stanford University, Stanford, CA (1983)Google Scholar
  16. 16.
    Qi, R., Zhang, N.L., Poole, D.: Solving asymmetric decision problems with influence diagrams. In: Proc. of the 10th conference on AI, pp. 491–497 (1994)Google Scholar
  17. 17.
    Salmerón, A., Cano, A., Moral, S.: Importance sampling in Bayesian networks using probability trees. Computational Statistics and Data Analysis 34, 387–413 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shachter, R.D.: Evaluating influence diagrams. Operations Research 34, 871–882 (1986)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Shenoy, P.: Valuation network representation and solution of asymmetric decision problems. European Journal of Operational Research 121(3), 579–608 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Smith, J.E., Holtzman, S., Matheson, J.E.: Structuring conditional relationships in influence diagrams. Operations Research 41(2), 280–297 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Manuel Gómez
    • 1
  • Andrés Cano
    • 1
  1. 1.Dpt. Computer Science and Artificial Intelligence, E.T.S. Ingeniería InformáticaUniversity of GranadaGranadaSpain

Personalised recommendations