Qualitative Decision Rules under Uncertainty

  • Didier Dubois
  • Hélène Fargier
  • Régis Sabbadin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2711)

Abstract

This paper is a survey of qualitative decision theory focused on the available decision rules under uncertainty, and their properties. It is pointed out that two main approaches exist according to whether degrees of uncertainty and degrees of utility are commensurate (that is, belong to a unique scale) or not. Savage-like axiomatics for both approaches are surveyed. In such a framework, acts are functions from states to results, and decision rules are used to characterize a preference relation on acts. It is shown that the emerging uncertainty theory in qualitative settings is possibility theory rather than probability theory. However these approaches lead to criteria that are either little decisive due to incomparabilities, or too adventurous because focusing on the most plausible states, or yet lacking discrimination because or the coarseness of the value scale. Some new results overcoming these defects are reviewed. Interestingly, they lead to genuine qualitative counterparts to expected utility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F., Grove, A.: Utility independence in a qualitative decision theory. In: Proc. of the 5th Inter. Conf. on Princ. Of Know. Repres. and Reas. (KR 1996), Cambridge, Mass, pp. 542–552 (1996)Google Scholar
  2. 2.
    Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic semantics of conditional knowledge. J. Logic and Computation 9, 873–895 (1999)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Boutilier, C.: Towards a logic for qualitative decision theory. In: Proc. of the 4rd Inter. Conf. on Princ. of Knowl. Repres. and Reason. (KR 1994), Bonn, Germany, pp. 75–86 (1994)Google Scholar
  4. 4.
    Brafman, R.I., Tennenholtz, M.: Modeling agents as qualitative decision makers. Artificial Intelligence 94, 217–268 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brafman, R.I., Tennenholtz, M.: On the Axiomatization of Qualitative Decision Criteria. J. ACM 47, 452–482 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cohen, M., Jaffray, J.: Rational behavior under complete ignorance. Econometrica 48, 1280–1299 (1980)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Doyle, J., Thomason, R.: Background to qualitative decision theory. The AI Magazine 20(2), 55–68 (Summer 1999)Google Scholar
  8. 8.
    Dubois, D.: Belief structures, possibility theory and decomposable confidence measures on finite sets. Computers and AI (Bratislava) 5(5), 403–416 (1986)MATHGoogle Scholar
  9. 9.
    Dubois, D., Fargier, H., Prade, H.: Refinements of the maximin approach to decision-making in fuzzy environment. Fuzzy Sets and Systems 81, 103–122 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dubois, D., Fargier, H., Prade, H.: Decision making under ordinal preferences and uncertainty. In: Proc. of the 13th Conf. on Uncertainty in AI, Providence, RI, pp. 157–164. Morgan & Kaufmann, San Francisco (1997)Google Scholar
  11. 11.
    Dubois, D., Fargier, H., Perny, P.: Towards a qualitative multicriteria decision theory. Int. in J. Intelligent Systems (2001) (to appear)Google Scholar
  12. 12.
    Dubois, D., Fargier, H., Perny, P., Prade, H.: Qualitative Decision Theory: from Savage’s Axioms to Non-Monotonic Reasoning. Journal of the ACM 49, 455–495 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dubois, D., Fargier, H., Perny, P.: On the limitations of ordinal approaches to decision-making. In: Proc.of the 8th Int. Conf., Principles of Knowledge Repres. and Reasoning (KR 2002), Toulouse, France, pp. 133–144. Morgan Kaufmann, San Francisco (2002)Google Scholar
  14. 14.
    Dubois, D., Fargier, H., Perny, P.: Qualitative Decision Theory with preference relations and comparative uncertainty: an axiomatic aproach. Artificial Intelligence (2003) (to appear)Google Scholar
  15. 15.
    Dubois, D., Fargier, H., Sabbadin, R.: Additive refinements of qualitative decision criteria. 24th Int. Seminar on Fuzzy Set Theory, Linz (2003)Google Scholar
  16. 16.
    Dubois, D., Fortemps, P.: Computing improved optimal solutions to max-min flexible constraint satisfaction problems. Eur. J. of Oper. Res. 118, 95–126 (1999)MATHCrossRefGoogle Scholar
  17. 17.
    Dubois, D., Godo, L., Prade, H., Zapico, A.: On the possibilistic decision model: from decision under uncertainty to case-based decision. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 7, 631–670 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory. In: Proc. IJCAI 1995, Montréal, Canada, pp. 1924–1930 (1995)Google Scholar
  19. 19.
    Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Smets, P. (ed.) Handbook on Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer Academic Publ., Dordrecht (1998)Google Scholar
  20. 20.
    Dubois, D., Prade, H., Sabbadin, R.: Qualitative decision theory with Sugeno integrals. In: Proc. of 14th Conf. on Uncertainty in AI (UAI 1998), Madison, WI, USA, pp. 121–128. Morgan Kaufmann, San Francisco (1998)Google Scholar
  21. 21.
    Dubois, D., Prade, H., Sabbadin, R.: Decision-theoretic foundations of possibility theory. European Journal of Operational Research 128, 459–478 (2001)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Fargier, H., Perny, P.: Qualitative models for decision under uncertainty without the commensurability assumption. In: Proc. of the 15th Conf. on Uncertainty in AI, Providence, RI, pp. 157–164. Morgan & Kaufmann, San Francisco (1999)Google Scholar
  23. 23.
    Fargier, H., Lang, J., Sabbadin, R.: Towards qualitative approaches to multi-stage decision making. International Journal of Approximate Reasoning 19, 441–471 (1998)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Fargier, H., Sabbadin, R.: Can qualitative utility criteria obey the surething principle?. In: Proceedings IPMU2000, Madrid, pp. 821–826 (2000)Google Scholar
  25. 25.
    Fargier, H., Sabbadin, R.: Qualitative decion under uncertainty: back to expected utility. In: Proc. IJCAI 2003, Acapulco, Mexico (2003)Google Scholar
  26. 26.
    Fishburn, P.: Axioms for lexicographic preferences. Rev. Econ. Stud. 42, 415–419 (1975)MATHCrossRefGoogle Scholar
  27. 27.
    Friedman, N., Halpern, J.: Plausibility measures and default reasoning. In: Proc of the 13th National Conf. on AI (AAAI 1996), Portland, pp. 1297–1304 (1996)Google Scholar
  28. 28.
    Giang, P., Shenoy, P.: A comparison of axiomatic approaches to qualitative decision- making using possibility theory. In: Proc. 17th Int. Conf. on Uncertainty in AI, pp. 162–170. Morgan Kaufmann, San Francisco (2001)Google Scholar
  29. 29.
    Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals. Physica- Verlag, Heidelberg (2000)MATHGoogle Scholar
  30. 30.
    Kraus, K., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Lang, J.: Conditional desires and utilities: an alternative logical approach to qualitative decision theory. In: Proc. 12th Eur. Conf. on AI (ECAI 1996), Budapest, pp. 318–322 (1996)Google Scholar
  32. 32.
    Lehmann, D.: Generalized qualitative probability: Savage revisited. In: Proc. 12th Conf. on Uncertainty in AI, Portland, pp. 381–388. Morgan & Kaufman, San Mateo (1996)Google Scholar
  33. 33.
    Lehmann, D.: Expected Qualitative Utility Maximization. J. Games and Economic Behavior 35, 54–79 (2001)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Lewis, D.: Counterfactuals. Basil Blackwell, London (1973)Google Scholar
  35. 35.
    Sabbadin, R.: Empirical comparison of probabilistic and possibilistic Markov decision processes algorithms. In: Proc. 14th Eur. Conf. on AI (ECAI 2000), Berlin, Germany, pp. 586–590 (2000)Google Scholar
  36. 36.
    Savage, L.J.: The Foundations of Statistics. Dover, New York (1972)MATHGoogle Scholar
  37. 37.
    Snow, P.: Diverse confidence levels in a probabilistic semantics for conditional logics. Artificial Intelligence 113, 269–279 (1999)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Tan, S.W., Pearl, J.: Qualitative decision theory. In: Proc. 11th National Conf. on AI (AAAI 1994), Seattle, WA, pp. 70–75 (1994)Google Scholar
  39. 39.
    Thomason, R.: Desires and defaults: a framework for planning with inferred goals. In: Proc. of the Inter. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), Breckenridge, Col., pp. 702–713. Morgan & Kaufmann, San Francisco (2000)Google Scholar
  40. 40.
    Whalen, T.: Decision making under uncertainty with various assumptions about available information. IEEE Trans. on Systems, Man and Cybernetics 14, 888–900 (1984)MathSciNetGoogle Scholar
  41. 41.
    Yager, R.R.: Possibilistic decision making. IEEE Trans. on Systems, Man and Cybernetics 9, 388–392 (1979)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Didier Dubois
    • 1
  • Hélène Fargier
    • 1
  • Régis Sabbadin
    • 2
  1. 1.IRITUniversité Paul SabatierToulouse Cedex 4France
  2. 2.INRA-BIACastanet-Tolosan cedex

Personalised recommendations