Decentralized Algorithms for Multirobot Manipulation via Caging

  • Guilherme A. S. Pereira
  • Vijay Kumar
  • Mario F. M. Campos
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 7)

Abstract

This paper addresses the problem of transporting objects with multiple mobile robots using the concept of object closure. In contrast to other manipulation techniques that are typically derived from form or force closure constraints, object closure requires the less stringent condition that the object be trapped or caged by the robots. Our basic goal in this paper is to develop decentralized control policies for a group of robots to achieve a condition of object closure, and then, move toward a goal position while maintaining this condition. We present experimental results that show car-like robots controlled using visual feedback, transporting an object in an obstacle free environment toward a prescribed goal.

References

  1. 1.
    Ota J., Miyata N., Arai T. (1995) Transferring and regrasping a large object by cooperation of multiple mobile robots. In: IEEE/RJS Int’l Conf. on Intelligent Robots and Systems, 543–548.Google Scholar
  2. 2.
    Kosuge K., Oosumi T. (1996) Decentralized control of multiple robots handling an object. In: IEEE/RJS Int’l Conf. on Intel. Robots and Systems, 318–323.Google Scholar
  3. 3.
    Rus D. (1997) Coordinated manipulation of objects in a plane. Algorithmica, 19 (1/2): 129–147.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Sugar T., Kumar V. (1998) Decentralized control of cooperating mobile manipulators. In: IEEE Int’l. Conf on Robotics and Automation, 2916–2921.Google Scholar
  5. 5.
    Rimon E., Burdick J. (1996) On force and form closure for multiple finger grasps. In: IEEE Int’l. Conf on Robotics and Automation, 1795–1800.CrossRefGoogle Scholar
  6. 6.
    Mataric M., Nilsson M., and Simsarian K. (1995) Cooperative multi-robot box-pushing. In: IEEE/RJS Int’l. Conf. on Intelligent Robots and Systems, 556–561.Google Scholar
  7. 7.
    Lynch K. M. (1996) Stable pushing: Mechanics, controllability, and planning. Int’l Journal of Robotics Research, 15 (6): 533–556.CrossRefGoogle Scholar
  8. 8.
    Rimon E., Blake A. (1996) Caging 2D bodies by one parameter, two-fingered gripping systems. In: IEEE Int’l Conf on Robotics and Automation, 1458–1464.CrossRefGoogle Scholar
  9. 9.
    Davidson C., Blake A. (1998) Caging planar objects with a three-finger one-parameter gripper. In: IEEE Int’l Conf. on Robotics and Automation, 2722–2727.Google Scholar
  10. 10.
    Wang Z., Kumar V. (2002) Object closure and manipulation by multiple cooperative mobile robots. In: IEEE Int’l. Conf. on Robotics and Automation, 394–399.Google Scholar
  11. 11.
    Sudsang A., Ponce J. (1998) On grasping and manipulating polygonal objects with disc-shaped robots in the plane. In: IEEE Int’l Conf. on Robotics and Automation, 2740–2746.Google Scholar
  12. 12.
    Sudsang A., Ponce J., Hyman M., Kriegman D. J. (1999) On manipulating polygonal objects three 2-DOF robots in the plane. In: IEEE Int’l Conf. on Robotics and Automation, 2227–2234.Google Scholar
  13. 13.
    Sudsang A., Ponce J. (2000) A new approach to motion planning for discshaped robots manipulating a polygonal object in the plane. In: IEEE Int’l Conf. on Robotics and Automation, 1068–1075.Google Scholar
  14. 14.
    Latombe J-C. (1991) Robot Motion Planning. Kluwer Academic Publishers, Boston, MA.CrossRefGoogle Scholar
  15. 15.
    Song P., Kumar V. (2002) A potential field based approach to multi-robot manipulation. In: IEEE Int’l Conf on Robotics and Automation, 1217–1222.Google Scholar
  16. 16.
    Esposito J. M., Kumar V. (2002) A method for modifying closed-loop motion plans to satisfy unpredictable dynamic constraints at runtime. In: IEEE Int’l Conf. on Robotics and Automation, 1691–1696.Google Scholar
  17. 17.
    Ponamgi M. K., Manocha D., Lin M. C. (1997) Incremental algorithms for collision detection between polygonal models. IEEE Trans, on Visualization and Computer Graphics, 3(1): 51–64.CrossRefGoogle Scholar
  18. 18.
    Pereira G. A. S., Kumar V., Spletzer J., Taylor C. J., Campos M. F. M. (2002) Cooperative transport of planar objects by multiple mobile robots using object closure. In: Siciliano B., Dario P. (Eds.) Experimental Robotics VIII, 8th Int’l Symp. on Experimental Robotics, Springer, 275–284.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Guilherme A. S. Pereira
    • 1
    • 2
  • Vijay Kumar
    • 1
  • Mario F. M. Campos
    • 2
  1. 1.GRASP Lab.University of PennsylvaniaPhiladelphiaUSA
  2. 2.VERLabUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations