Not Everything We Know We Learned

  • Mihai Nadin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2684)


This is foremost a methodological contribution. It focuses on the foundation of anticipation and the pertinent implications that anticipation has on learning (theory and experiments). By definition, anticipation does not exhaust all the forms through which the future affects human activity. Accordingly, guessing, expectation, prediction, forecast, and planning will be defined in counter-distinction to anticipation. The background against which these distinctions are made is explicit in the operational thesis advanced: Anticipation and reaction can be considered only in their unity. The interrelation of anticipation and reaction corresponds to the integrated nature of the physical and the living. Finally, an agent architecture for a hybrid control mechanism is suggested as a possible implementation.


Facial Expression Future State Time Series Prediction Facial Action Code System Deterministic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, R.W.: Einstein. In: The Life and Times. Avon, New York (1972)Google Scholar
  2. 2.
    Peirce, C.S.: CP 2.222. In: Hartshorne, C., Weiss, P. (eds.) The Collected Papers of Charles Sanders Peirce, vol. I-VI, Harvard University Press, Cambridge (1931)Google Scholar
  3. 3.
    Rosen, R.: Anticipatory Systems. Pergamon Press, New York (1985)Google Scholar
  4. 4.
    Rosen, R.: Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. Columbia University Press, New York (1991)Google Scholar
  5. 5.
    Rosen, R.: Essays on Life Itself. In: Complexity in Ecological Systems. Columbia University Press, New York (2000)Google Scholar
  6. 6.
    Nadin, M.: Mind—Anticipation and Chaos. Belser Presse, Zürich Stuttgart (1991), based on lecture: Mind–Intelligence is Process, Ohio State University (1988)Google Scholar
  7. 7.
    Dubois, D., Resconi, G.: Hyperincursivity: A New Mathematical Theory. Presses Universitaires de Liège, Liège (1992)Google Scholar
  8. 8.
    Mihai, N.: Anticipation: The Cause Lies in the Future. Lars Mueller Publishers, Baden Switzerland (2003)Google Scholar
  9. 9.
    Schultz, W.: Multiple reward signals in the brain. Nature Reviews/Neuroscience 1, 199–207 (2001)CrossRefGoogle Scholar
  10. 10.
    Elsasser, W.M.: Reflections on a Theory of Organisms. Johns Hopkins University Press, Baltimore (1998); Originally published as Reflections on a Theory of Organisms. Holism in Biology. Orbis Publishing, Frelighsberg, Quebec (1987)Google Scholar
  11. 11.
    Schall, J.: Neural Basis of Deciding, Choosing, and Acting. Nature Reiews Neuroscience 2, 33–42 (2001)CrossRefGoogle Scholar
  12. 12.
    Rigney, D.R., Goldberger, A.L., Ocasio, W.C., Ichimaru, Y., Moody, G.B., Mark, R.G.: Multi-Channel Physiological Data: Description and Analysis (Data Set B). In: Weigend, A.S., Gershenfeld, N.A. (eds.) Time Series Prediction: Forecasting the Future and Understanding the Past. Addison Wesley Longman, Amsterdam (1994)Google Scholar
  13. 13.
    Ernest, P.: The one and the many. In: Steffe, L., Gale, J. (eds.) Constructivism in Education, pp. 459–486. Lawrence Erlbaum Associates, Inc., New Jersey (1995)Google Scholar
  14. 14.
    Novak, J., Gowin, D.B.: Learning How to Learn. Cambridge University Press, Cambridge (1984/1999)Google Scholar
  15. 15.
    Nadin, M.: The Civilization of Illiteracy. Dresden University Press, Dresden (1997)Google Scholar
  16. 16.
    Adolph, E.F.: Origins of Physiological Relations. Academic Press, New York (1961)Google Scholar
  17. 17.
    Cannon, W.B.: The Wisdom of the Body, 2nd edn. Peter Smith Publisher, New York (1939)Google Scholar
  18. 18.
    Trzebski, A.: Baroreceptor Reflex Revisited (editorial comment). Polish Heart Journal L 5, 405 (1999)Google Scholar
  19. 19.
    Nadin, M.: Anticipation–A Spooky Computation. In: Dubois, D. (ed.) CASYS, International Journal of Computing Anticipatory Systems, Partial Proceedings of CASYS 1999, vol. 6, pp. 3–47. CHAOS, Liege (1999)Google Scholar
  20. 20.
    Meegan, D.V., Aslin, R.N., Jacobs, R.A.: Motor timing learned without motor training. Nature/Neuroscience 3(9), 860–862 (2000)Google Scholar
  21. 21.
    Carlsson, K., Petrovic, S.S., Petersson, K.M., Ingvar, M.: Tickling Expectations: Neural Processing in Anticipation of a Sensory Stimulus. Journal of Cognitive Neuroscience 12, 691–703 (2000)CrossRefGoogle Scholar
  22. 22.
    Serrien, D.J., Wiesendanger, M.: Role of the Cerebellum in Tickling. Anticipatory and Reactive Free Responses. Journal of Cognitive Neuroscience 11, 672–681 (1999)CrossRefGoogle Scholar
  23. 23.
    Braun, A.R., Guillemen, H., Hosey, L., Varga, M.: The neural organization of discourse. Brain 124(10), 2028–2044 (2001)CrossRefGoogle Scholar
  24. 24.
    Guenther, F.H.: Neural modeling of speech production. In: Proceedings of the 4th International Nijmegen Speech Motor Conference, Nijmegen (2001)Google Scholar
  25. 25.
    Max, L.: Stuttering and Internal Models for Sensorimotor Control: Deriving Testable Hypotheses for a Theoretical Perspective. In: Maassen, B., Kent, R., Peters, H.F.M., Lieshout, P., van Hulstijn, P. (eds.) Speech Motor Control in Normal and Disorderd Speech, Oxford University Press, Oxford (forthcoming)Google Scholar
  26. 26.
    Gallese, V.: The Inner Sense of Action. Agency and Motor Representations. Journal of Consciousness Studies 7(10), 23–40 (2000)Google Scholar
  27. 27.
    Wiesendanger, M., Serrien, D.J.: Toward a physiological understanding of human dexterity. News in Physiological Sciences 16(5), 228–233 (2001)Google Scholar
  28. 28.
    Wolpert, D.M., Ghahramani, Y.: Computational principles of movement neuroscience. Nature/Neuroscience Supplement 3, 1212–1217 (2000)Google Scholar
  29. 29.
    von Foerster, H.: Der Anfang von Himmel und Erde hat keinen Namen, 2nd edn. Döcker Verlag, Vienna (1999)Google Scholar
  30. 30.
    Pearl, J.: Causality. Models, Reasoning and Inference. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  31. 31.
    Zadeh, L.A.: An Outline of Computational Theory of Perceptions Based on Computing with Words. In: Sinha, N.K., Gupta, M.N., Zadeh, L.A. (eds.) Soft Computing & Intelligent Systems, pp. 3–22. Academic Press, New York (2000)CrossRefGoogle Scholar
  32. 32.
    Minsky, M.: The Virtual Duck and the Endangered Nightingale. Digital Media, 68–74 (June 5, 1995)Google Scholar
  33. 33.
    Fletcher, P.C., Anderson, J.M., Shanks, D.R., Honey, R., Carpenter, T.A., Donovan, T., Papadakis, N., Bullmore, E.T.: Responses of human frontal cortex to surprising events are predicted by formal associative learning theory. Nature Neuroscience 4(10), 1043–1048 (2001)CrossRefGoogle Scholar
  34. 34.
    von Glasersfeld, E.: Radical Constructivism: A Way of Knowing and Learning. The Falmer Press, London (1995)CrossRefGoogle Scholar
  35. 35.
    Ekman, P., Rosenberg, E.L. (eds.): What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, Oxford (1997)Google Scholar
  36. 36.
    Gladwell, M.: The Naked Face. Can experts really read your thoughts? The New Yorker, 38–49 (August 5, 2002)Google Scholar
  37. 37.
    Dayan, P., Sham, K., Montague, P.R.: Read: Learning and selective attention. Nature Neuroscience 3, 1218–1223 (2000)CrossRefGoogle Scholar
  38. 38.
    Nicolelis, M.A.: Actions from thoughts. Nature 409, 403–407 (2001)CrossRefGoogle Scholar
  39. 39.
    Ekman, P.: Universals and cultural differences in facial expressions of emotion. In: Cole, J. (ed.) Nebraska Symposium on Motivation 1971, vol. 19, pp. 207–283. University of Nebraska Press, Lincoln (1972)Google Scholar
  40. 40.
    Bergson, H.: La matière et la mémoire (1896) (The English edn., cited by Elsasser, was published as Matter and Memory, Allen and Unwin, London)Google Scholar
  41. 41.
    Haylick, L.: The future of ageing. Nature 408, 267–269 (2000)CrossRefGoogle Scholar
  42. 42.
    Davidsson, P., Astor, E., Ekdahl, B.: A framework for autonomous agents based on the concept of anticipatory systems. In: Cybernetics and Systems, pp. 1427–1434. World Scientific, Singapore (1994)Google Scholar
  43. 43.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Ragheb, M., Tsoukalas, L.: A coupled probability-possibility method for decision-making in knowledge-based systems. In:S. C-Y. Lu, S.C-Y, Commanduri, R. (eds.) Knowledge-Based Expert Systems for Manufacturing, New York. ASME, New York (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mihai Nadin
    • 1
    • 2
  1. 1.Program in Computational DesignUniversity of WuppertalGermany
  2. 2.President, MINDesignUSA/Germany

Personalised recommendations