Advertisement

Association Rule Interestingness Measures: Experimental and Theoretical Studies

  • Philippe Lenca
  • Benoît Vaillant
  • Patrick Meyer
  • Stephane Lallich
Part of the Studies in Computational Intelligence book series (SCI, volume 43)

Keywords

Association Rule Knowledge Discovery Association Rule Mining Interestingness Measure Apriori Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Abe, S. Tsumoto, M. Ohsaki, and T. Yamaguchi. Evaluating model construction methods with objective rule evaluation indices to support human experts. In V. Torra, Y. Narukawa, A. Valls, and J. Domingo-Ferrer, editors, Modeling Decisions for Artificial Intelligence, volume 3885 of Lecture Notes in Computer Science, pages 93-104, Tarragona, Spain, 2006. Springer-Verlag.Google Scholar
  2. 2.
    R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules between sets of items in large databases. In P. Buneman and S. Jajodia, editors, ACM SIGMOD International Conference on Management of Data, pages 207-216, 1993.Google Scholar
  3. 3.
    J. Azé and Y. Kodratoff. Evaluation de la résistance au bruit de quelques mesures d’extraction de règles d’assocation. In D. Hérin and D.A. Zighed, editors, Extraction des connaissances et apprentissage, volume 1, pages 143-154. Hermes, 2002.Google Scholar
  4. 4.
    J. Azé and Y. Kodratoff. A study of the effect of noisy data in rule extraction systems. In The Sixteenth European Meeting on Cybernetics and Systems Research, volume 2, pages 781-786, 2002.Google Scholar
  5. 5.
    J. P. Barthélemy, A. Legrain, P. Lenca, and B. Vaillant. Aggregation of valued relations applied to association rule interestingness measures. In V. Torra, Y. Narukawa, A. Valls, and J. Domingo-Ferrer, editors, Modeling Decisions for Artificial Intelligence, volume 3885 of Lecture Notes in Computer Science, pages 203-214, Tarrogona, Spain, 2006. Springer-Verlag.Google Scholar
  6. 6.
    R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 145-154, 1999.Google Scholar
  7. 7.
    R. Bisdorff. Bipolar ranking from pairwise fuzzy outrankings. Belgian Journal of Operations Research, Statistics and Computer Science, 37(4) :379-387, 1999.Google Scholar
  8. 8.
    C.L. Blake and C.J. Merz. UCI repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.
  9. 9.
    J. Blanchard, F. Guillet, and H. Briand. A virtual reality environment for knowledge mining. In R. Bisdorff, editor, Human Centered Processes, pages 175-179, Luxembourg, 2003.Google Scholar
  10. 10.
    J. Blanchard, F. Guillet, H. Briand, and R. Gras. Assessing the interestingness of rules with a probabilistic measure of deviation from equilibrium. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 191-200, Brest, France, 2005.Google Scholar
  11. 11.
    J. Blanchard, F. Guillet, H. Briand, and R. Gras. IPEE : Indice probabiliste d’écart à l’équilibre pour l’évaluation de la qualité des règles. In Atelier Qualité des Données et des Connaissances (EGC 2005), pages 26-34, 2005.Google Scholar
  12. 12.
    J. Blanchard, F. Guillet, R. Gras, and H. Briand. Using information-theoretic measures to assess association rule interestingness. In The 5th IEEE International Conference on Data Mining, pages 66-73, Houston, Texas, USA, 2005. IEEE Computer Society Press.Google Scholar
  13. 13.
    C. Borgelt and R. Kruse. Induction of association rules: Apriori implementation. In Compstat’02, pages 395-400, Berlin, Germany, 2002. Physica Verlag.Google Scholar
  14. 14.
    J.P. Brans and B. Mareschal. promethee-gaia - Une méthode d’aide à la décision en présence de critères multiples. Ellipses, 2002.Google Scholar
  15. 15.
    J.P. Brans and P. Vincke. A preference ranking organization method. Manage- ment Science, 31(6):647-656, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Brijs, K. Vanhoof, and G. Wets. Defining interestingness for association rules. International journal of information theories and applications, 10(4):370-376,2003.Google Scholar
  17. 17.
    S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing association rules to correlations. In ACM SIGMOD/PODS’97 Joint Conference, pages 265-276, 1997.Google Scholar
  18. 18.
    S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In J. Peckham, editor, ACM SIGMOD International Conference on Management of Data, pages 255-264, Tucson, Arizona, USA, 1997. ACM Press.Google Scholar
  19. 19.
    J.-H. Chauchat and A. Risson. Visualization of Categorical Data, chapter 3, pages 37-45. Blasius J. & Greenacre M. ed., 1998. New York: Academic Press.Google Scholar
  20. 20.
    K.W. Church and P. Hanks. Word association norms, mutual information an lexicography. Computational Linguistics, 16(1):22-29, 1990.Google Scholar
  21. 21.
    E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang. Finding interesting associations without support pruning. In The 16th International conference on Data engineering, 2000.Google Scholar
  22. 22.
    J. Cohen. A coefficient of agreement for nominal scale. Educational and Psychological Measurement, 20:37-46, 1960.CrossRefGoogle Scholar
  23. 23.
    A.W.F. Edwards. The measure of association in a 2 x 2 table. Journal of the Royal Statistical Society, Series A, 126(1):109-114, 1963.CrossRefGoogle Scholar
  24. 24.
    U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.Google Scholar
  25. 25.
    D. Feno, J. Diatta, and A. Totohasina. Normalisée d’une mesure probabiliste de la qualité des règles d’association : étude de cas. In Atelier Qualité des Données et des Connaissances (EGC 2006), pages 25-30, 2006.Google Scholar
  26. 26.
    A. Freitas. On rule interestingness measures. Knowledge-Based Systems journal, pages 309-315, 1999.Google Scholar
  27. 27.
    V. Giakoumakis and B. Monjardet. Coefficients d’accord entre deux préordres totaux. Statistique et Analyse des Données, 12(1 et 2):46-99, 1987.MathSciNetGoogle Scholar
  28. 28.
    I.J. Good. The estimation of probabilities: An essay on modern bayesian methods. The MIT Press, Cambridge, MA, 1965.zbMATHGoogle Scholar
  29. 29.
    R. Gras, S. Ag. Almouloud, M. Bailleuil, A. Larher, M. Polo, H. Ratsimba-Rajohn, and A. Totohasina. L’implication Statistique, Nouvelle Méthode Exploratoire de Données. Application à la Didactique, Travaux et Thèses. La Pensée Sauvage, 1996.Google Scholar
  30. 30.
    R. Gras, R. Couturier, J. Blanchard, H. Briand, P. Kuntz, and P. Peter. Quelques critères pour une mesure de qualité de règles d’association - un exemple: l’intensité d’implication. Revue des Nouvelles Technologies de l’Information (Mesures de Qualité pour la Fouille de Données), (RNTI-E-1):3-31, 2004.Google Scholar
  31. 31.
    R. Gras, P. Kuntz, R. Couturier, and F. Guillet. Une version entropique de l’intensité d’implication pour les corpus volumineux. In H. Briand and F. Guillet, editors, Extraction des connaissances et apprentissage, volume 1, pages 69-80. Hermes, 2001.Google Scholar
  32. 32.
    S. Greco, Z. Pawlak, and R. Slowinski. Can bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence, 17(4):345-361, 2004.CrossRefGoogle Scholar
  33. 33.
    S. Guillaume. Traitement des données volumineuses, Mesures et algorithmes d’extraction de règles d’association et règles ordinales. PhD thesis, Université de Nantes, 2000.Google Scholar
  34. 34.
    F. Guillet. Mesures de la qualité des connaissances en ECD. Atelier, Extraction et gestion des connaissances, 2004.Google Scholar
  35. 35.
    P. Hajek, I. Havel, and M. Chytil. The guha method of automatic hypotheses determination. Computing, (1):293-308, 1966.Google Scholar
  36. 36.
    R.J. Hilderman and H.J. Hamilton. Applying objective interestingness measures in data mining systems. In Fourth European Symposium on Principles of Data Mining and Knowledge Discovery, pages 432-439. Springer Verlag, 2000.Google Scholar
  37. 37.
    R.J. Hilderman and H.J. Hamilton. Evaluation of interestingness measures for ranking discovered knowledge. Lecture Notes in Computer Science, 2035:247-259,2001.CrossRefGoogle Scholar
  38. 38.
    R.J. Hilderman and H.J. Hamilton. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.Google Scholar
  39. 39.
    R.J. Hilderman and H.J. Hamilton. Measuring the interestingness of discovered knowledge: A principled approach. Intelligent Data Analysis, 7(4):347-382,2003.zbMATHGoogle Scholar
  40. 40.
    Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Mining confident co-location rules without a support threshold. In The 18th Annual ACM Symposium on Applied Computing. ACM, 2003.Google Scholar
  41. 41.
    F. Hussain, H. Liu, E. Suzuki, and H. Lu. Exception rule mining with a relative interestingness measure. In T. Terano, H. Liu, and A.L.P. Chen, editors, The Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, volume 1805 of Lecture Notes in Artificial Intelligence, pages 86-97. SpringerVerlag, 2000.Google Scholar
  42. 42.
    X-H. Huynh, F. Guillet, and H. Briand. ARQAT: An exploratory analysis tool for interestingness measures. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 334-344, Brest, France, 2005.Google Scholar
  43. 43.
    A. Iodice D’Enza, F. Palumbo, and M. Greenacre. Exploratory data analysis leading towards the most interesting binary association rules. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 256-265, Brest, France, 2005.Google Scholar
  44. 44.
    S. Jaroszewicz and D.A. Simovici. A general measure of rule interestingness. In The 5th European Conference on Principles of Data Mining and Knowledge Discovery, pages 253-265, London, UK, 2001. Springer-Verlag.Google Scholar
  45. 45.
    H.J. Jeffreys. Some tests of significance treated by the theory of probability. In Proceedings of the Cambridge Philosophical Society, number 31, pages 203-222, 1935.Google Scholar
  46. 46.
    M. Kamber and R. Shingal. Evaluating the interestingness of characteristic rules. In The Second International Conference on Knowledge Discovery and Data Mining, pages 263-266, Portland, Oregon, August 1996.Google Scholar
  47. 47.
    D. A. Keim. Information visualization and visual data mining. IEEE Transactions On Visualization And Computer Graphics, 7(1):100-107, 2002.MathSciNetGoogle Scholar
  48. 48.
    M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from large sets of discovered association rules. In N.R. Adam, B.K. Bhargava, and Y. Yesha, editors, Third International Conference on Information and Knowledge Management, pages 401-407. ACM Press, 1994.Google Scholar
  49. 49.
    S. Lallich. Mesure et validation en extraction des connaissances à partir des données. Habilitation à Diriger des Recherches - Université Lyon 2, 2002.Google Scholar
  50. 50.
    S. Lallich, E. Prudhomme, and O. Teytaud. Contrôle du risque multiple en sélection de règles d’association significatives. In G. Hébrail, L. Lebart, and J.-M. Petit, editors, Extraction et gestion des connaissances, volume 1-2, pages 305-316. Cépaduès Editions, 2004.Google Scholar
  51. 51.
    S. Lallich and O. Teytaud. É valuation et validation de l’intérêt des règles d’association. Revue des Nouvelles Technologies de l’Information (Mesures de Qualité pour la Fouille de Données), (RNTI-E-1):193-217, 2004.Google Scholar
  52. 52.
    S. Lallich, B. Vaillant, and P. Lenca. Parametrised measures for the evaluation of association rule interestingness. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 220-229, Brest, France, 2005.Google Scholar
  53. 53.
    N. Lavrac, P. Flach, and B. Zupan. Rule evaluation measures: A unifying view. In S. Dzeroski and P. Flach, editors, Ninth International Workshop on Inductive Logic Programming, volume 1634 of Lecture Notes in Computer Science, pages 174-185. Springer-Verlag, 1999.Google Scholar
  54. 54.
    E. Le Saux, P. Lenca, J-P. Barthélemy, and P. Picouet. Updating a rule basis under cognitive constraints: the COMAPS tool. In The Seventeenth European Annual Conference on Human Decision Making and Manual Control, pages 3-9, December 1998.Google Scholar
  55. 55.
    E. Le Saux, P. Lenca, and P. Picouet. Dynamic adaptation of rules bases under cognitive constraints. European Journal of Operational Research, 136(2):299-309,2002.zbMATHCrossRefGoogle Scholar
  56. 56.
    R. Lehn, F. Guillet, P. Kuntz, H. Briand, and J. Philippé. Felix: An interactive rule mining interface in a KDD process. In P. Lenca, editor, Human Centered Processes, pages 169-174, Brest, France, 1999.Google Scholar
  57. 57.
    P. Lenca, P. Meyer, P. Picouet, B. Vaillant, and S. Lallich. Critères d’évaluation des mesures de qualité en ecd. Revue des Nouvelles Technologies de l’Information (Entreposage et Fouille de Données), (1):123-134, 2003.Google Scholar
  58. 58.
    P. Lenca, P. Meyer, B. Vaillant, and S. Lallich. A multicriteria decision aid for interestingness measure selection. Technical Report LUSSI-TR-2004-01-EN, Département LUSSI, ENST Bretagne, 2004.Google Scholar
  59. 59.
    P. Lenca, P. Meyer, B. Vaillant, and P. Picouet. Aide multicritère à la décision pour évaluer les indices de qualité des connaissances - modélisation des préférences de l’utilisateur. In M.-S. Hacid, Y. Kodratoff, and D. Boulanger, editors, Extraction et gestion des connaissances, volume 17 of RSTI-RIA, pages 271-282. Lavoisier, 2003.Google Scholar
  60. 60.
    P. Lenca, P. Meyer, B. Vaillant, P. Picouet, and S. Lallich. Évaluation et analyse multicritère des mesures de qualité des règles d’association. Revue des Nouvelles Technologies de l’Information (Mesures de Qualité pour la Fouille de Données), (RNTI-E-1):219-246, 2004.Google Scholar
  61. 61.
    P. Lenca, B. Vaillant, and S. Lallich. On the robustness of association rules. In IEEE International Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, 2006.Google Scholar
  62. 62.
    I.C. Lerman. Classification et analyse ordinale des données. Dunod, 1970.Google Scholar
  63. 63.
    I.C. Lerman and J. Azé. Une mesure probabiliste contextuelle discriminante de qualité des règles d’association. In M.-S. Hacid, Y. Kodratoff, and D. Boulanger, editors, Extraction et gestion des connaissances, volume 17 of RSTI-RIA, pages 247-262. Lavoisier, 2003.Google Scholar
  64. 64.
    I.C. Lerman, R. Gras, and H. Rostam. Elaboration d’un indice d’implication pour les données binaires, i et ii. Mathématiques et Sciences Humaines, (74, 75):5-35, 5-47, 1981.Google Scholar
  65. 65.
    B. Liu, W. Hsu, and S. Chen. Using general impressions to analyze discovered classification rules. In Third International Conference on Knowledge Discovery and Data Mining, pages 31-36, 1997.Google Scholar
  66. 66.
    B. Liu, W. Hsu, S. Chen, and Y. Ma. Analyzing the subjective interestingness of association rules. IEEE Intelligent Systems, 15(5):47-55, 2000.CrossRefGoogle Scholar
  67. 67.
    B. Liu, W. Hsu, K. Wang, and S. Chen. Visually aided exploration of interesting association rules. In Third Pacific-Asia Conference on Methodologies for Knowledge Discovery and Data Mining, pages 380-389. Springer Verlag, 1999.Google Scholar
  68. 68.
    J. Loevinger. A systemic approach to the construction and evaluation of tests of ability. Psychological monographs, 61(4), 1947.Google Scholar
  69. 69.
    J.-L. Marichal, P. Meyer, and M. Roubens. Sorting multi-attribute alternatives: The tomaso method. Computers & Operations Research, (32):861-877, 2005.Google Scholar
  70. 70.
    K. McGarry. A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review Journal, 20(1):39-61, 2005.CrossRefGoogle Scholar
  71. 71.
    M. Ohsaki, Y. Sato, S. Kitaguchi, H. Yokoi, and T. Yamaguchi. Comparison between objective interestingness measures and real human interest in medical data mining. In R. Orchard, C. Yang, and M. Ali, editors, The 17th international conference on Innovations in Applied Artificial Intelligence, volume 3029 of Lecture Notes in Artificial Intelligence, pages 1072-1081. Springer-Verlag, 2004.Google Scholar
  72. 72.
    B. Padmanabhan. The interestingness paradox in pattern discovery. Journal of Applied Statistics, 31(8):1019-1035, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In C. Beeri and P. Buneman, editors, The 7th International Conference on Database Theory, volume 1540 of Lecture Notes in Computer Science, pages 398-416, Jerusalem, Israel, 1999. Springer.Google Scholar
  74. 74.
    K. Pearson. Mathematical contributions to the theory of evolution. iii. regression, heredity and panmixia. Philosophical Transactions of the Royal Society, A, 1896.Google Scholar
  75. 75.
    G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro and W.J. Frawley, editors, Knowledge Discovery in Databases, pages 229-248. AAAI/MIT Press, 1991.Google Scholar
  76. 76.
    P. Picouet and P. Lenca. Bases de données et internet, chapter Extraction de connaissances à partir des données, pages 395-420. Hermes Science, 2001.Google Scholar
  77. 77.
    M. Plasse, N. Niang, G. Saporta, and L. Leblond. Une comparaison de certains indices de pertinence des règles d’association. In G. Ritschard and C. Djeraba, editors, Extraction et gestion des connaissances, volume 1-2, pages 561-568. Cépaduès- Éditions, 2006.Google Scholar
  78. 78.
    F. Poulet. Visualization in data-mining and knowledge discovery. In P. Lenca, editor, Human Centered Processes, pages 183-191, Brest, France, 1999.Google Scholar
  79. 79.
    F. Poulet. Towards visual data mining. In 6th International Conference on Enterprise Information Systems, pages 349-356, 2004.Google Scholar
  80. 80.
    J. Rauch and M. Simunek. Mining for 4ft association rules by 4ft-miner. In Proceeding of the International Conference On Applications of Prolog, pages 285-294, Tokyo, Japan, 2001.Google Scholar
  81. 81.
    M. Sebag and M. Schoenauer. Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases. In J. Boose, B. Gaines, and M. Linster, editors, The European Knowledge Acquisition Workshop, pages 28-1-28-20. Gesellschaft für Mathematik und Datenverarbeitung mbH, 1988.Google Scholar
  82. 82.
    A. Silberschatz and A. Tuzhilin. On subjective measures of interestingness in knowledge discovery. In Knowledge Discovery and Data Mining, pages 275-281, 1995.Google Scholar
  83. 83.
    A. Silberschatz and A. Tuzhilin. User-assisted knowledge discovery: How much should the user be involved. In ACM-SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1996.Google Scholar
  84. 84.
    S.J. Simoff. Towards the development of environments for designing visualisation support for visual data mining. In S.J. Simoff, M. Noirhomme-Fraiture, and M.H. Böhlen, editors, International Workshop on Visual Data Mining in cunjunction with ECML/PKDD’01, pages 93-106, 2001.Google Scholar
  85. 85.
    E. Suzuki. In pursuit of interesting patterns with undirected discovery of ex- ception rules. In S. Arikawa and A. Shinohara, editors, Progresses in Discovery Science, volume 2281 of Lecture Notes in Computer Science, pages 504-517. Springer-Verlag, 2002.Google Scholar
  86. 86.
    E. Suzuki. Discovering interesting exception rules with rule pair. In ECML/PKDD Workshop on Advances in Inductive Rule Learning, pages 163-178,2004.Google Scholar
  87. 87.
    P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association patterns. In The Eighth ACM SIGKDD International Conference on KDD, pages 32-41, 2002.Google Scholar
  88. 88.
    P-N. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for association analysis. Information Systems, 4(29):293-313, 2004.CrossRefGoogle Scholar
  89. 89.
    A. Totohasina, H. Ralambondrainy, and J. Diatta. Notes sur les mesures proba-bilistes de la qualité des règles d’association: un algorithme efficace d’extraction des règles d’association implicative. In 7ème Colloque Africain sur la Recherche en Informatique, pages 511-518, 2004.Google Scholar
  90. 90.
    B. Vaillant. Evaluation de connaissances: le problème du choix d’une mesure de qualité en extraction de connaissances à partir des données. Master’s thesis, Ecole Nationale Supérieure des Télécommunications de Bretagne, 2002.Google Scholar
  91. 91.
    B. Vaillant, P. Lenca, and S. Lallich. Association rule interestingness measures: an experimental study. Technical Report LUSSI-TR-2004-02-EN, Département LUSSI, ENST Bretagne, 2004.Google Scholar
  92. 92.
    B. Vaillant, P. Lenca, and S. Lallich. A clustering of interestingness measures. In E. Suzuki and S. Arikawa, editors, Discovery Science, volume 3245 of Lecture Notes in Artificial Intelligence, pages 290–297, Padova, Italy, 2004. SpringerVerlag.Google Scholar
  93. 93.
    B. Vaillant, P. Picouet, and P. Lenca. An extensible platform for rule quality measure benchmarking. In R. Bisdorff, editor, Human Centered Processes, pages 187–191, 2003.Google Scholar
  94. 94.
    H. Xiong, P. Tan, and V. Kumar. Mining strong affinity association patterns in data sets with skewed support distribution. In Third IEEE International Conference on Data Mining, pages 387–394, Melbourne, Florida, 2003.Google Scholar
  95. 95.
    T. Zhang. Association rules. In T. Terano, H. Liu, and A.L.P. Chen, editors, 4th Pacific-Asia Conference Knowledge Discovery and Data Mining, Current Issues and New Applications, volume 1805 of Lecture Notes in Computer Science, Kyoto, Japan, 2000. Springer.Google Scholar
  96. 96.
    A. Zimmermann and L. De Raedt. CorClass: Correlated association rule mining for classification. In E. Suzuki and S. Arikawa, editors, Discovery Science, volume 3245 of Lecture Notes in Artificial Intelligence, pages 60–72, Padova, Italy, 2004. Springer-Verlag..Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Philippe Lenca
    • 1
  • Benoît Vaillant
    • 2
  • Patrick Meyer
    • 3
  • Stephane Lallich
    • 4
  1. 1.TAMCIC CNRS 2872GET/ENSTFrance
  2. 2.TAMCIC CNRS 2872GET/ENSTFrance
  3. 3.University of LuxemburgGermany
  4. 4.ERICUniversity of Lyon 2France

Personalised recommendations