Advertisement

A Procedure for Biological Sensitive Pattern Matching in Protein Sequences

  • Juan Méndez
  • Antonio Falcón
  • Javier Lorenzo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2652)

Abstract

A Procedure for fast pattern matching in protein sequences is presented. It uses a biological metric, based on the substitution matrices as PAM or BLOSUM, to compute the matching. Biological sensitive pattern matching does pattern detection according to the available empirical data about similarity and affinity relations between amino acids in protein sequences. Sequence alignments is a string matching procedure used in Genomic; it includes insert/delete operators and dynamic programming techniques; it provides more sophisticate results that other pattern matching procedures but with higher computational cost. Heuristic procedures for local alignments as FASTA or BLAST are used to reduce this cost. They are based on some successive tasks; the first one uses a pattern matching procedure with very short sequences, also named k-tuples. This paper shows how using the L 1 metric this matching task can be efficiently computed by using SIMD instructions. To design this procedure, a table that maps the substitution matrices is needed. This table defines a representation of each amino acid residue in a n-dimensional space of lower dimensionality as possible; this is accomplished by using techniques of Multidimensional Scaling used in Pattern Recognition and Machine Learning for dimensionality reduction. Based on the experimental tests, the proposed procedure provides a favorable ration of cost vs matching quality.

Keywords

Pattern Matching Biological Pattern Analysis Sequence Alignments Multidimensional Scaling SIMD Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local aligment search tool. Jor. Mol. Biol. 215, 403–410 (1990)Google Scholar
  2. 2.
    Attwood, T.K., Parry-Smith, D.J.: Introduction to Bioinformatics. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  3. 3.
    De Backer, S., Naud, A., Scheunders, P.: Nonlinear dimensionality reduction techniques for unsupervised feature extraction. Pattern Recognition Letters 19, 711–720 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baldi, P., Brunak, S.: Bioinformatics, The Machine Learning Approach. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  5. 5.
    Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Howe, K.L., Sonnhammer, E.L.: The pfam protein families database. Nucleic Acids Research 28, 263–266 (2000)CrossRefGoogle Scholar
  6. 6.
    Bik, A., Girkar, M., Grey, P., Tian, X.: Efficient exploitation of parallelism on pentium III and pentium 4 processor-based systems. Intel Technology Journal Q 1, 1–9 (2001)Google Scholar
  7. 7.
    Coleman, T., Branch, M.A., Gracce, A.: Optimization Toolbox User’s Guide. Mathworks Inc. (1999)Google Scholar
  8. 8.
    Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: Atlas of Protein Sequence and Structure, vol. 5. Nat. Biomed. Res. Found. (1978)Google Scholar
  9. 9.
    de Vel, O., Li, S., Coomans, D.: Learning from Data: AI and Statistics. In: Chapter Non-Linear Dimensionality Reduction: A Comparative Performance Analysis, pp. 323–331. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, Chichester (2001)zbMATHGoogle Scholar
  11. 11.
    Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89, 10915–10919 (1992)CrossRefGoogle Scholar
  12. 12.
    Houck, C.R., Joines, J.A., Kay, M.G.: A genetic algoritm for function optimization: A matlabim plementation. Technical report, NCSU (1995)Google Scholar
  13. 13.
    Hughey, R.: Parallel hardware for sequence comparation and alignment. CABIOS 12(6), 473–479 (1996)Google Scholar
  14. 14.
    Hunter, L.: Artificial Intelligence and Mollecular Biology. MIT Press, Cambridge (1993)Google Scholar
  15. 15.
    Li, S., de Vel, O., Coomans, D.: Comparative performance analysis of nonlinear dimensionality reduction methods. Technical report, James Cook Univ. (1995)Google Scholar
  16. 16.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in amino acid sequences of two proteins. Jor. Mol. Biol. 48, 443–453 (1970)CrossRefGoogle Scholar
  17. 17.
    Pearson, W.R.: Protein sequence comparation and protein evolution. Technical report, Dept. Biochemistry and Molecular Genetics. Unv. Virginia (2001)Google Scholar
  18. 18.
    Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparation. Proc. Natl. Acad. Sci. 85(8), 2444–2448 (1988)CrossRefGoogle Scholar
  19. 19.
    Rognes, T.: Paralign: a parallel sequence algorithm for rapid and sensitive databases searches. Nucleic Acids Research 29(7), 1647–1652 (2001)CrossRefGoogle Scholar
  20. 20.
    Rognes, T., Seeberg, E.: Six-fold speed-up of smith-waterman sequence database searches using parallel processing on common microprocessors. Bioinformatics 16(8), 699–706 (2000)CrossRefGoogle Scholar
  21. 21.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Computers 18, 401–409 (1969)CrossRefGoogle Scholar
  22. 22.
    Scheunders, P., De Backer, S., Naud, A.: Non-linear mapping for feature extraction. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 823–830. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Jor. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  24. 24.
    Yap, T.K., Frieder, O., Martino, R.L.: Parallel computation in biological sequence analysis. IEEE Trans. on Parall. and Distr. Syst. 9(3), 1–12 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Juan Méndez
    • 1
  • Antonio Falcón
    • 1
  • Javier Lorenzo
    • 1
  1. 1.Intelligent Systems Institute. IUSIANIUniv. Las Palmas de Gran CanariaSpain

Personalised recommendations