Vehicle License Plate Segmentation in Natural Images

  • Javier Cano
  • Juan-Carlos Pérez-Cortés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2652)


A robust method for plate segmentation in a License Plate Recognition (LPR) system is presented, designed to work in a wide range of acquisition conditions, including unrestricted scene environments, light, perspective and camera-to-car distance. Although this novel text-region segmentation technique has been applied to a very specific problem, it is extensible to more general contexts, like difficult text segmentation tasks dealing with natural images. Extensive experimentation has been performed in order to estimate the best parameters for the task at hand, and the results obtained are presented.


Natural Image License Plate Text Region Acquisition Condition Text Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cano, J., Perez-Cortes, J.C., Arlandis, J., Llobet, R.: Trainig set expansion in handwritten character recognition. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, p. 548. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Clark, P., Mirmehdi, M.: Finding text regions using localised measures. In: Mirmehdi, M., Thomas, B. (eds.) Proceedings of the 11th British Machine Vision Conference, pp. 675–684. BMVA Press (2000)Google Scholar
  3. 3.
    Ney, H., Keysers, D., Paredes, R., Vidal, E.: Combination of tangent vectors and local representations for handwritten digit recognition. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, p. 538. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Jain, A., Bhattacharjee, S.: Text segmentation using gabor filters for automatic document processing. Machine Vision and Applications 5, 169–184 (1992)CrossRefGoogle Scholar
  5. 5.
    Jain, A., Yu, B.: Automatic text location in images and video frames. In: Proceedings of ICPR, pp. 1497–1499 (1998)Google Scholar
  6. 6.
    Paredes, R., Perez-Cortes, J., Juan, A., Vidal, E.: Face recognition using local representations and a direct voting scheme. In: Proc. of the IX Spanish Symposium on Pattern Recognition and Image Analysis, Benicassim (Spain), May 2001, vol. I, pp. 249–254 (2001)Google Scholar
  7. 7.
    Perez-Cortes, J.C., Arlandis, J., Llobet, R.: Fast and accurate handwritten character recognition using approximate nearest neighbours search on large databases. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, p. 767. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Wu, V., Riseman, E.: Textfinder: An automatic system to detect and recognize text in images. IEEE Transactions on pattern analysis and machine intelligence 21(11) (1999)Google Scholar
  9. 9.
    Zhong, Y., Karu, K., Jain, A.: Locating text in complex color images. Pattern Recognition 28(10), 1523–1536 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Javier Cano
    • 1
  • Juan-Carlos Pérez-Cortés
    • 1
  1. 1.Instituto Tecnológico de InformáticaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations