On Random Sets and Belief Functions

  • Hung T. Nguyen
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 219)


Probability Measure Topological Space Compact Space Multivalued Mapping Belief Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Shafer, “Allocations of Probability: A Theory of Partial Belief,” Ph.D. Thesis, Univ. Microfilms, Ann Arbor, Mich.,1974.Google Scholar
  2. 2.
    G. Shafer, “A Mathematical Theory of Evidence,” Princeton Univ. Press, Princeton, N.J., 1976.MATHGoogle Scholar
  3. 3.
    A. Dempster, Upper and lower probabilities induced by multivalued mapping, Ann. Math. Statist. 38 (1967), 325–339.CrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Choquet, Theory of capacities, Ann. Inst. Fourier, Univ. (Grenoble) 5 (1953–1954), 131–296.Google Scholar
  5. 5.
    D. G. Kendall, “Foundations of a Theory of Random Sets” in Stochastic Geometry, pp. 322–376, Wiley, New York, 1974.Google Scholar
  6. 6.
    G. Matheron, “Random Sets and Integral Geometry,” Wiley, New York, 1975.MATHGoogle Scholar
  7. 7.
    F. Spitzer, “Random Fields and Interacting Particle Systems,” Math. Assos. Amer., Washington, D.C., 1971.Google Scholar
  8. 8.
    T. E. Harris, On a class of set-valued Markov processes, Ann. Probability 4 (1976), 175–194.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    L. A. Zadeh, Fuzzy sets, Inform. Contr. 8 (1965), 338–353.Google Scholar
  10. 10.
    G. Debreu, Integration of correspondences, in“Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (1967),” Vol. II, Part 1, pp. 351–372.Google Scholar
  11. 11.
    Cl. Berge, “Espaces Topologiques, Fonctions Multivoques,” Dunod, Paris, 1959.Google Scholar
  12. 12.
    G. C. Rota, Theory of Mobius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hung T. Nguyen

There are no affiliations available

Personalised recommendations