Sputtering by Particle Bombardment pp 21-31

Part of the Topics in Applied Physics book series (TAP, volume 110) | Cite as

Computer Simulation of the Sputtering Process

Abstract

Sputtering is caused by a series of atomic collisions between the incident projectiles and target atoms and between the target atoms themselves. These collision cascades can be followed with computer programs and with the Boltzmann transport equation. The two main approaches with computer programs are the binary collision approximation (BCA) and molecular dynamics (MD); they are both based on classical dynamics. Programs based on BCA describe sputtering by a sequence of independent binary collisions between atoms, whereas MD simulates the time evolution of the multiple interaction of each moving atom with all the atoms in some surrounding. The BCA approach can be regarded to be based on ’sequential event logic’, whereas the MD approach is based on ’multiple interaction logic’ according to Harrison [1]. Both approaches have advantages and disadvantages [2, 3].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Harrison, Jr.: CRC Critical Reviews in Solid State and Material Sciences, vol. 14, Supplement 1 (CRC Boca Raton 1988) Google Scholar
  2. W. Eckstein: Computer Simulation of Ion Solid Interaction, Springer Ser. Mater. Sci. 10 (Springer, Berlin, Heidelberg 1991) {Russ.} translation: (MIR, Moscow 1995) Google Scholar
  3. H. M. Urbassek: Nucl. Instrum. Methods B 122, 427 (1997) CrossRefGoogle Scholar
  4. M. M. Bredov, I. G. Lang, N. M. Okuneva: Zh. Tekh. Fiz. 28, 252 (1958) {S}ov. Phys.-Tech. Phys. \textbf{3}, 228 (1958) Google Scholar
  5. D. T. Goldman, D. E. Harrison, Jr, R. R. Coveyou: Tech. Rep. ORNL 2729, Technical report, Oak Ridge (1959) Google Scholar
  6. M. T. Robinson, I. M. Torrens: Phys. Rev. B 9, 5008 (1974) CrossRefGoogle Scholar
  7. M. T. Robinson, D. K. Holmes, O. S. Oen: Le Bombardement Ionique: discussion (CRNS, Paris 1962) p. 105 Google Scholar
  8. M. T. Robinson, O. S. Oen: Appl. Phys. Lett. 2, 30 (1963) CrossRefGoogle Scholar
  9. J. P. Biersack, L. G. Haggmark: Nucl. Instrum. Methods 174, 257 (1980) CrossRefGoogle Scholar
  10. J. P. Biersack, W. Eckstein: Appl. Phys. A 34, 73 (1984) CrossRefGoogle Scholar
  11. H. Goldstein: Classical Mechanics, 2 ed. (Addison-Wesley, Reading 1980) Chap. 3 Google Scholar
  12. G. Moli\`ere: Z. Naturforsch. A 2, 133 (1947) Google Scholar
  13. W. D. Wilson, L. G. Haggmark, J. P. Biersack: Phys. Rev. B 15, 2458 (1977) CrossRefGoogle Scholar
  14. J. F. Ziegler, J. P. Biersack, U. Littmark: The stopping and range of ions in solids, in J. F. Ziegler (Ed.): The Stopping and Range of Ions in Matter, vol. 1 (Pergamon, New York 1985) Google Scholar
  15. S. T. Nakagawa, Y. Yamamura: Radiat. Eff. 105, 239 (1988) CrossRefGoogle Scholar
  16. J. Lindhard, M. Scharff: Phys. Rev. 124, 128 (1961) CrossRefGoogle Scholar
  17. O. S. Oen, M. T. Robinson: Nucl. Instrum. Methods 132, 647 (1976) CrossRefGoogle Scholar
  18. E. Fermi, E. Teller: Phys. Rev. 72, 399 (1947) CrossRefGoogle Scholar
  19. O. B. Firsov: Zh. Eksp. Teor. Fiz. 36, 1517 (1959) {S}ov. Phys.-JETP \textbf{36}, 1076 (1959) Google Scholar
  20. H. A. Bethe: Z. Phys. 76, 193 (1932) Google Scholar
  21. F. Bloch: Z. Phys. 81, 363 (1933) CrossRefGoogle Scholar
  22. H. H. Andersen, J. F. Ziegler: Hydrogen stopping powers and ranges in all elements, in J. F. Ziegler (Ed.): The Stopping and Range of Ions in Matter, vol. 3 (Pergamon, New York 1985) Google Scholar
  23. J. F. Ziegler: Helium stopping powers and ranges in all elements, in J. F. Ziegler (Ed.): The Stopping and Range of Ions in Matter, vol. 4 (Pergamon, New York 1977) Google Scholar
  24. W. M\öller, W. Eckstein, J. P. Biersack: Comput. Phys. Commun. 51, 355 (1988) CrossRefGoogle Scholar
  25. W. Eckstein, R. Dohmen, A. Mutzke, R. Schneider: Report IPP 12/3, Technical report, Garching (2007) Google Scholar
  26. B. J. Alder, T. E. Wainwright: J. Chem. Phys. 27, 1208 (1957) CrossRefGoogle Scholar
  27. J. B. Gibson, A. N. G. M. Milgram, G. H. Vineyard: Phys. Rev. 120, 1229 (1960) CrossRefGoogle Scholar
  28. M. P. Allen, D. J. Tildesley (Eds.): Computer Simulation of Liquids (Clarendon, Oxford 1987) Google Scholar
  29. J. M. Haile: Molecular Dynamics Simulation: Elementary Methods (Wiley, New York 1992) Google Scholar
  30. M. P. Allen, D. J. Tildesley: Computer Simulation in Chemical Physics, NATO ASI E: Applied Sciences 397 (Kluwer, Dordrecht 1993) Google Scholar
  31. D. Raabe: Computational Materials Science (Wiley-VCH, Weinheim 1998) Google Scholar
  32. A. R. Leach: Molecular Modelling – Principles and Applications, 2 ed. (Pearson Education, Harlow 2001) Google Scholar
  33. D. Frenkel, B. Smit: Understanding Molecular Simulation, 2 ed. (Academic, San Diego 2002) Google Scholar
  34. J. R. Beeler, Jr.: Radiation Effects Computer Experiments (North-Holland, Amsterdam 1983) Google Scholar
  35. R. Smith (Ed.): Atomic and Ion Collisions in Solids and at Surfaces (Cambridge Univ. Press, Cambridge 1997) Google Scholar
  36. M. Finnis: Interatomic Forces in Condensed Matter (Oxford Univ. Press, Oxford 2003) Google Scholar
  37. M. S. Daw, S. M. Foiles, M. Baskes: Mater. Sci. Rep. 9, 251 (1993) CrossRefGoogle Scholar
  38. S. M. Foiles: MRS Bull. 21, 24 (1996) Google Scholar
  39. F. H. Stillinger, T. A. Weber: Phys. Rev. B 31, 5262 (1985) CrossRefGoogle Scholar
  40. J. Tersoff: Phys. Rev. Lett. 56, 632 (1986) CrossRefGoogle Scholar
  41. D. W. Brenner: MRS Bull. 21, 36 (1996) Google Scholar
  42. M. Jentschel, K. H. Heinig, H. G. B{\ö}rner, J. Jolie, E. G. Kessler: Nucl. Instrum. Methods B 115, 446 (1996) CrossRefGoogle Scholar
  43. R. M. Nieminen: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 43, 81 (1993) Google Scholar
  44. C. P. Flynn, R. S. Averback: Phys. Rev. B 38, 7118 (1988) CrossRefGoogle Scholar
  45. A. Caro, M. Victoria: Phys. Rev. A 40, 2287 (1989) CrossRefGoogle Scholar
  46. M. W. Finnis, P. Agnew, A. J. E. Foreman: Phys. Rev. B 44, 567 (1991) CrossRefGoogle Scholar
  47. I. Koponen: J. Appl. Phys. 72, 1194 (1992) CrossRefGoogle Scholar
  48. A. Caro: Radiat. Eff. Defects Solids 130-131, 187 (1994) CrossRefGoogle Scholar
  49. E. M. Bringa, K. Nordlund, J. Keinonen: Phys. Rev. B 64, 235426 (2001) CrossRefGoogle Scholar
  50. H. M. Urbassek, K. T. Waldeer: Phys. Rev. Lett. 67, 105 (1991) CrossRefGoogle Scholar
  51. M. Moseler, J. Nordiek, H. Haberland: Phys. Rev. B 56, 15439 (1997) CrossRefGoogle Scholar
  52. H. Haberland, Z. Insepov, M. Moseler: Phys. Rev. B 51, 11061 (1995) CrossRefGoogle Scholar
  53. T. J. Colla, B. Briehl, H. M. Urbassek: Radiat. Eff. Defects Solids 142, 415 (1997) CrossRefGoogle Scholar
  54. K. Nordlund, J. Tarus, J. Keinonen, S. E. Donnelly, R. C. Birtcher: Nucl. Instrum. Methods B 206, 189 (2003) CrossRefGoogle Scholar
  55. S. Zimmermann, H. M. Urbassek: Nucl. Instrum. Methods B 228, 75 (2005) CrossRefGoogle Scholar
  56. M. A. Karolewski: Nucl. Instrum. Methods B 211, 190 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Max-Planck-Institut für PlasmaphysikGarchingGermany
  2. 2.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations