Who Is the Best Connected Scientist?A Study of Scientific Coauthorship Networks

  • Mark E.J. Newman
Part III Information Networks & Social Networks
Part of the Lecture Notes in Physics book series (LNP, volume 650)


Using data from computer databases of scientific papers in physics, biomedical research, and computer science, we have constructed networks of collaboration between scientists in each of these disciplines. In these networks two scientists are considered connected if they have coauthored one or more papers together. We have studied many statistical properties of our networks, including numbers of papers written by authors, numbers of authors per paper, numbers of collaborators that scientists have, typical distance through the network from one scientist to another, and a variety of measures of connectedness within a network, such as closeness and betweenness. We further argue that simple networks such as these cannot capture the variation in the strength of collaborative ties and propose a measure of this strength based on the number of papers coauthored by pairs of scientists, and the number of other scientists with whom they worked on those papers. Using a selection of our results, we suggest a variety of possible ways to answer the question “Who is the best connected scientist?”


Social Network Short Path Random Graph Social Network Analysis Collaboration Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. S. Wasserman and K. Faust, Social Network Analysis. Cambridge University Press, Cambridge (1994).Google Scholar
  2. 2. J. Scott, Social Network Analysis: A Handbook. Sage, London, 2nd edition (2000).Google Scholar
  3. 3. S. H. Strogatz, Exploring complex networks. Nature 410, 268–276 (2001).Google Scholar
  4. 4. A.-L. Barabási, Linked: The New Science of Networks. Perseus, Cambridge, MA (2002).Google Scholar
  5. 5. D. J. Watts, Six Degrees: The Science of a Connected Age. Norton, New York (2003).Google Scholar
  6. 6. M. E. J. Newman, The structure and function of complex networks. SIAM Review 45, 167–256 (2003).Google Scholar
  7. 7. P. Mariolis, Interlocking directorates and control of corporations: The theory of bank control. Social Science Quarterly 56, 425–439 (1975).Google Scholar
  8. 8. J. Galaskiewicz and P. V. Marsden, Interorganizational resource networks: Formal patterns of overlap. Social Science Research 7, 89–107 (1978).Google Scholar
  9. 9. J. F. Padgett and C. K. Ansell, Robust action and the rise of the Medici, 1400–1434. Am. J. Sociol. 98, 1259–1319 (1993).Google Scholar
  10. 10. A. Rapoport and W. J. Horvath, A study of a large sociogram. Behavioral Science 6, 279–291 (1961).Google Scholar
  11. 11. T. J. Fararo and M. Sunshine, A Study of a Biased Friendship Network. Syracuse University Press, Syracuse (1964).Google Scholar
  12. 12. H. R. Bernard, P. D. Killworth, M. J. Evans, C. McCarty, and G. A. Shelley, Studying social relations cross-culturally. Ethnology 2, 155–179 (1988).Google Scholar
  13. 13. J. Moody, Race, school integration, and friendship segregation in America. Am. J. Sociol. 107, 679–716 (2001).Google Scholar
  14. 14. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet topology. Computer Communications Review 29, 251–262 (1999).Google Scholar
  15. 15. Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger, The origin of power laws in Internet topologies revisited. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE Computer Society (2002).Google Scholar
  16. 16. R. Albert, H. Jeong, and A.-L. Barabási, Diameter of the world-wide web. Nature 401, 130–131 (1999).Google Scholar
  17. 17. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Graph structure in the web. Computer Networks 33, 309–320 (2000).Google Scholar
  18. 18. H. Ebel, L.-I. Mielsch, and S. Bornholdt, Scale-free topology of e-mail networks. Phys. Rev. E 66, 035103 (2002).Google Scholar
  19. 19. M. E. J. Newman, S. Forrest, and J. Balthrop, Email networks and the spread of computer viruses. Phys. Rev. E 66, 035101 (2002).Google Scholar
  20. 20. L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, Search in power-law networks. Phys. Rev. E 64, 046135 (2001).Google Scholar
  21. 21. M. Ripeanu, I. Foster, and A. Iamnitchi, Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Computing 6, 50–57 (2002).Google Scholar
  22. 22. D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).Google Scholar
  23. 23. J. Abello, A. Buchsbaum, and J. Westbrook, A functional approach to external graph algorithms. In Proceedings of the 6th European Symposium on Algorithms, Springer, Berlin (1998).Google Scholar
  24. 24. P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S. Manna, Small-world properties of the Indian railway network. Phys. Rev. E 67, 036106 (2003).Google Scholar
  25. 25. A. Davis, B. B. Gardner, and M. R. Gardner, Deep South. University of Chicago Press, Chicago (1941).Google Scholar
  26. 26. G. F. Davis and H. R. Greve, Corporate elite networks and governance changes in the 1980s. Am. J. Sociol. 103, 1–37 (1997).Google Scholar
  27. 27. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149–11152 (2000).Google Scholar
  28. 28. B. Wellman, J. Salaff, D. Dimitrova, L. Garton, M. Gulia, and C. Haythornthwaite, Computer networks as social networks. Annual Review of Sociology 22, 213–238 (1996).Google Scholar
  29. 29. P. Hoffman, The Man Who Loved Only Numbers. Hyperion, New York (1998).Google Scholar
  30. 30. P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 26, 738–742 (1940).Google Scholar
  31. 31. R. M. Ziff, G. E. Uhlenbeck, and M. Kac, The ideal Bose-Einstein gas, revisited. Phys. Rep. 32, 169–248 (1977).Google Scholar
  32. 32. M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation. Phys. Rev. Lett. 85, 4104–4107 (2000).Google Scholar
  33. 33. V. Batagelj and A. Mrvar, Some analyses of Erdős collaboration graph. Social Networks 22, 173–186 (2000).Google Scholar
  34. 34. J. W. Grossman, The evolution of the mathematical research collaboration graph. Congressus Numerantium 158, 202–212 (2002).Google Scholar
  35. 35. J. W. Grossman and P. D. F. Ion, On a portion of the well-known collaboration graph. Congressus Numerantium 108, 129–131 (1995).Google Scholar
  36. 36. L. Egghe and R. Rousseau, Introduction to Informetrics. Elsevier, Amsterdam (1990).Google Scholar
  37. 37. H. Kretschmer, Coauthorship networks of invisible college and institutionalized communities. Scientometrics 30, 363–369 (1994).Google Scholar
  38. 38. O. Persson and M. Beckmann, Locating the network of interacting authors in scientific specialties. Scientometrics 33, 351–366 (1995).Google Scholar
  39. 39. G. Melin and O. Persson, Studying research collaboration using co-authorships. Scientometrics 36, 363–377 (1996).Google Scholar
  40. 40. Y. Ding, S. Foo, and G. Chowdhury, A bibliometric analysis of collaboration in the field of information retrieval. Intl. Inform. and Libr. Rev. 30, 367–376 (1999).Google Scholar
  41. 41. M. Bordens and I. Gómez, Collaboration networks in science. In H. B. Atkins and B. Cronin (eds.), The Web of Knowledge: A Festschrift in Honor of Eugene Garfield, Information Today, Medford, NJ (2000).Google Scholar
  42. 42. D. J. de S. Price, Networks of scientific papers. Science 149, 510–515 (1965).Google Scholar
  43. 43. P. O. Seglen, The skewness of science. J. Amer. Soc. Inform. Sci. 43, 628–638 (1992).Google Scholar
  44. 44. S. Redner, How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998).Google Scholar
  45. 45. M. E. J. Newman, Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001).CrossRefGoogle Scholar
  46. 46. M. E. J. Newman, Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001).Google Scholar
  47. 47. M. E. J. Newman, Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001).Google Scholar
  48. 48. A.-L. Barabási, H. Jeong, E. Ravasz, Z. Néda, A. Schuberts, and T. Vicsek, Evolution of the social network of scientific collaborations. Physica A 311, 590–614 (2002).Google Scholar
  49. 49. H. B. O’Connell, Physicists thriving with paperless publishing. Preprint physics/0007040 (2000).Google Scholar
  50. 50. A. J. Lotka, The frequency distribution of scientific production. J. Wash. Acad. Sci. 16, 317–323 (1926).Google Scholar
  51. 51. H. Voos, Lotka and information science. Journal of the American Society for Information Science (July-August 1974), 270–272 (1974).Google Scholar
  52. 52. M. L. Pao, An empirical examination of Lotka’s law. Journal of the American Society for Information Science (January 1986), 26–33 (1986).Google Scholar
  53. 53. M. E. J. Newman, The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001).Google Scholar
  54. 54. P. Erdős and A. Rényi, On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960).Google Scholar
  55. 55. B. Bollobás, Random Graphs. Academic Press, New York, 2nd edition (2001).Google Scholar
  56. 56. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).Google Scholar
  57. 57. A.-L. Barabási and R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999).Google Scholar
  58. 58. J. M. Kleinberg, Navigation in a small world. Nature 406, 845 (2000).Google Scholar
  59. 59. P. L. Krapivsky and S. Redner, Organization of growing random networks. Phys. Rev. E 63, 066123 (2001).Google Scholar
  60. 60. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd edition (2001).Google Scholar
  61. 61. H. Kautz, B. Selman, and M. Shah, ReferralWeb: Combining social networks and collaborative filtering. Comm. ACM 40, 63–65 (1997).Google Scholar
  62. 62. L. C. Freeman, A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977).Google Scholar
  63. 63. U. Brandes, A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001).Google Scholar
  64. 64. K.-I. Goh, B. Kahng, and D. Kim, Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001).Google Scholar
  65. 65. S. Milgram, The small world problem. Psychology Today 2, 60–67 (1967).Google Scholar
  66. 66. I. de S. Pool and M. Kochen, Contacts and influence. Social Networks 1, 1–48 (1978).Google Scholar
  67. 67. B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics 1, 311–316 (1980).Google Scholar
  68. 68. T. Łuczak, Sparse random graphs with a given degree sequence. In A. M. Frieze and T. Łuczak (eds.), Proceedings of the Symposium on Random Graphs, Poznań 1989, pp. 165–182, John Wiley, New York (1992).Google Scholar
  69. 69. M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 161–179 (1995).Google Scholar
  70. 70. M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree sequence. Combinatorics, Probability and Computing 7, 295–305 (1998).Google Scholar
  71. 71. M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99, 2566–2572 (2002).Google Scholar
  72. 72. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River, NJ (1993).Google Scholar

Authors and Affiliations

  • Mark E.J. Newman
    • 1
  1. 1.Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501USA

Personalised recommendations