Advertisement

An Extension of the Kolmogorov-Avrami Formula to Inhomogeneous Birth-and-Growth Processes

  • Martin Burger
  • Vincenzo Capasso
  • Alessandra Micheletti

Abstract

It has been shown by a substantial body of literature that the hazard function plays an important role in the derivation of evolution equations of volume and n-facet densities of Johnson-Mehl tessellations generated by germ-grain models associated with spatially homogeneous birth-and-growth processes.

Keywords

Surface Density Hazard Function Volume Density Austrian Academy Stochastic Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Avrami, Kinetic of phase change. Part I, J. Chem. Phys., 7 (1939), 1103–112.CrossRefGoogle Scholar
  2. 2.
    G. Barles, H.M. Soner, P.E. Souganidis, Front propagation and phase-field theory, SIAM J. Contr.Optim., 31 (1993), 439–469.zbMATHCrossRefGoogle Scholar
  3. 3.
    P. Brémaud, Point Processes and Queues, Martingale Dynamics, Springer-Verlag, New York, 1981.zbMATHGoogle Scholar
  4. 4.
    M. Burger, Growth fronts of .rst-order Hamilton-Jacobi equations. SFB Report 02–8, J. Kepler University, Linz (2002).Google Scholar
  5. 5.
    M. Burger, V. Capasso, L. Pizzocchero, Mesoscale averaging of nucleation and growth models. SIAM J. Multiscale Modeling and Simulation, (2006). In press.Google Scholar
  6. 6.
    V. Capasso, Ed., Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing, Springer-Verlag, Heidelberg, 2003.zbMATHGoogle Scholar
  7. 7.
    V. Capasso, A. Micheletti, Local spherical contact distribution function and local mean densities for inhomogeneous random sets, Stochastics and Stoch. Rep., 71 (2000), 51–67.zbMATHCrossRefGoogle Scholar
  8. 8.
    V. Capasso, A. Micheletti, Stochastic geometry of spatially structured birthand-growth processes. Application to crystallization processes. In Topics in Spatial Stochastic Processes (E. Merzbach, Ed.). Lecture Notes in Mathematics, Vol. 1802 - CIME Subseries, Springer-Verlag, Heidelberg, 2002, 1–39.Google Scholar
  9. 9.
    V. Capasso, A. Micheletti, Stochastic geometry and related statistical problems in Biomedicine In “Complex Systems in Biomedicine” (A. Quarteroni et al, Eds.) Springer, Milano, 2006.Google Scholar
  10. 10.
    V. Capasso, C. Salani, Stochastic-birth-and-growth processes modelling crystallization of polymers with spatially heterogeneous parameters, Nonlinear Analysis: Real World Application, 1 (2000), 485–498.zbMATHCrossRefGoogle Scholar
  11. 11.
    V. Capasso, E. Villa, On the evolution equations of mean geometric densities for a class of space and time inhomogeneous stochastic birth-and-growth processes In “Stochastic Geometry” (W. Weil, Editor) Lecture Notes in Mathematics - CIME subseries - Springer, Heidelberg, 2005.Google Scholar
  12. 12.
    V. Capasso, E. Villa, Continuous and absolutely continuous random sets. Stoch. Anal. Appl., 24 (2006), 381–397.zbMATHCrossRefGoogle Scholar
  13. 13.
    V. Capasso, E. Villa, On the geometric densities of random closed sets, 2005. RICAM Report 13/2006, Linz, Austria.Google Scholar
  14. 14.
    U. Hahn, A. Micheletti, R. Pohlink, D. Stoyan, H. Wendrock, Stereological Analysis and Modeling of Gradient Structures, J. of Microscopy, 195 (1999), 113–124.CrossRefGoogle Scholar
  15. 15.
    W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. A.I.M.M.E., 135 (1939), 416–458.Google Scholar
  16. 16.
    A.N. Kolmogorov, On the statistical theory of the crystallization of metals, Bull. Acad. Sci. USSR, Math. Ser.,1 (1937), 355–359.Google Scholar
  17. 17.
    G. Last, A. Brandt, Marked Point Processes on the Real Line. The Dynamic Approach, Springer, New York, 1995.zbMATHGoogle Scholar
  18. 18.
    G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.zbMATHGoogle Scholar
  19. 19.
    J. Møller, Random Johnson-Mehl tessellations, Adv. Appl. Prob., 24 (1992), 814–844.zbMATHCrossRefGoogle Scholar
  20. 20.
    G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, F. Bussolino, Modeling the early stages of vascular network assembly, EMBO J., 22 (2003), 1771–1779.CrossRefGoogle Scholar
  21. 21.
    D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Application, John Wiley & Sons, New York, 1995.Google Scholar
  22. 22.
    T. Ubukata, Computer modelling of microscopic features of molluscan shells. In Morphogenesis and Pattern Formation in Biological Systems (T. Sekimura etal. eds.), Springer-Verlag, Tokyo, 2003, 355–368.Google Scholar
  23. 23.
    V.S. Vladimirov, Generalized Functions in Mathematical Physics, Mir Publishers, Moscow, 1979.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Martin Burger
    • 1
  • Vincenzo Capasso
    • 2
  • Alessandra Micheletti
    • 2
  1. 1.Institut für IndustriemathematikJohannes Kepler UniversitätLinzAustria
  2. 2.ADAMSS(Centre for Advanced Applied Mathematical and Statistical Sciences) & Department of MathematicsUniversitá degli Studi di MilanoMilanoItaly

Personalised recommendations