Advertisement

Playing with Triangulations

  • Oswin Aichholzer
  • David Bremner
  • Erik D. Demaine
  • Ferran Hurtado
  • Evangelos Kranakis
  • Hannes Krasser
  • Suneeta Ramaswami
  • Saurabh Sethia
  • Jorge Urrutia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2866)

Abstract

We analyze several perfect-information combinatorial games played on planar triangulations. We introduce three broad categories of such games: constructing, transforming, and marking triangulations. In various situations, we develop polynomial-time algorithms to determine who wins a given game under optimal play, and to find a winning strategy. Along the way, we show connections to existing combinatorial games such as Kayles.

Keywords

Open Triangle Boundary Edge Winning Strategy Greedy Strategy Identical Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Bremner, D., Demaine, E.D., Hurtado, F., Kranakis, E., Krasser, H., Ramaswami, S., Sethia, S., Urrutia, J.: Games on Triangulations: Several Variations (manuscript in preparation)Google Scholar
  2. 2.
    Berlekamp, E.R.: The Dots and Boxes Game: Sophisticated Child’s Play. Academic Press, London (1982)Google Scholar
  3. 3.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays. Academic Press, London (1982); Second edition in print, A K Peters Ltd. (2001)zbMATHGoogle Scholar
  4. 4.
    Boedlander, H.L., Kratsch, D.: Kayles and Nimbers. J. of Algorithms 43, 106–119 (2002)CrossRefGoogle Scholar
  5. 5.
    Conway, J.H.: On Numbers and Games. Academic Press, London (1976); Second edition, A K Peters Ltd. (2002)zbMATHGoogle Scholar
  6. 6.
    Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10, 399–430 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Fraenkel, S.: Combinatorial Games: Selected Bibliography with a Succinct Gourmet Introduction. Electronic Journal of Combinatorics, http://www.wisdom.weizmann.ac.il/~fraenkel
  9. 9.
    Galtier, J., Hurtado, F., Noy, M., Pérennes, S., Urrutia, J.: Simultaneous edge flipping in triangulations (submitted)Google Scholar
  10. 10.
    Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16, 185–225 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • David Bremner
    • 2
  • Erik D. Demaine
    • 3
  • Ferran Hurtado
    • 4
  • Evangelos Kranakis
    • 5
  • Hannes Krasser
    • 6
  • Suneeta Ramaswami
    • 7
  • Saurabh Sethia
    • 8
  • Jorge Urrutia
    • 9
  1. 1.IICM – SoftwaretechnologyGraz University of TechnologyGrazAustria
  2. 2.Faculty of Computer ScienceUniversity of New BrunswickFrederictonCanada
  3. 3.Laboratory for Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Departament de Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaBarcelonaSpain
  5. 5.School of Computer ScienceCarleton UniversityOttawaCanada
  6. 6.Institute for Theoretical Computer ScienceGraz University of TechnologyGrazAustria
  7. 7.Computer Science DepartmentRutgers UniversityCamdenUSA
  8. 8.Department of Computer ScienceOregon State UniversityCorvallisUSA
  9. 9.Instituto de MatemáticasUniversidad Nacional Autónoma de México, Área inv. científ., Circ. Ext., Ciudad Univ., CoyoacánMéxico, D.F.México

Personalised recommendations