Advertisement

Constants, Units and Standards

  • Jeff Flowers
  • Brian Petley
Part II Fundamental Constants
Part of the Lecture Notes in Physics book series (LNP, volume 648)

Abstract

Our knowledge of the Universe depends on our ability to make measurements. Measurement is essentially a comparison process. In order to make comparisons valid for different positions in space and time a system of invariant units is required. The fundamental constants are a natural system of units in physics and have increasingly been used in practice to provide what is assumed to be an invariant, practical system of standards and units that is sufficiently constant for present-day technology. Measurement of a fundamental constant has often been limited by our ability to realise the appropriate unit. The situation then has been inverted and the relevant fundamental constant has been used in practice to define or maintain the unit.

We consider measurement as a comparison, the fundamental constants as units, whether the constants are constant, the practical realizations of the SI units, their interaction with the fundamental constants and present accuracy.1

Footnotes
  1. 1.

    ©Crown Copyright 2004, Reproduced by permission of the Controller of HMSO

Keywords

Physical Review Letter Fundamental Constant Fundamental Physical Constant Rydberg Constant MOSFET Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, and F. L. Walls, Metrologia 39, 321, 2002.Google Scholar
  2. 2. J.-M. Lévy-Leblond. The importance of being (a) constant. In: G. Toraldo di Francia, editor, Problems in the Foundations of Physics; Proceedings of the International School of Physics ”Enrico Fermi” Course LXXII, pages 237–263. North-Holland, Amsterdam, 1979.Google Scholar
  3. 3. G. J. Stoney. On the physical units of nature. Philosophical Magazine 11, 381, 1881.Google Scholar
  4. 4. M. Planck. The theory of heat radiation. Dover, New York, 1959. See p. 218 for Planck units.Google Scholar
  5. 5. P. J. Mohr and B. N. Taylor, CODATA recommended values of the fundamental physical constants 1998. Reviews of Modern Physics 72, 351, 2000.Google Scholar
  6. 6. K. von Klitzing, G. Dorda, and M. Pepper, Physical Review Letters 45, 494, 1980.Google Scholar
  7. 7. A. M. Thompson and D. G. Lampard, Nature 177, 888, 1956.Google Scholar
  8. 8. B. P. Kibble. A measurement of the gyromagnetic ratio of the proton by the strong field method. In: J. H. Sanders and A. H. Wapstra, editors, Atomic Masses and Fundamental Constants 5, pages 545–551. Plenum Press, London and New York, 1975.Google Scholar
  9. 9. R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Physical Review D 34, 722, 1986.Google Scholar
  10. 10. T. Kinoshita and M. Nio, Physical Review Letters 90, 021803, 2003.Google Scholar
  11. 11. B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, A. Acef, A. Clarion, and J. J. Zondy, Physical Review Letters 78, 440, 1997.Google Scholar
  12. 12. C. Schwob, L. Jozefowski, B. De Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef, J.-J. Zondy, and A. Clarion, Physical Review Letters 82, 4960, 1999.Google Scholar
  13. 13. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, Th Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, Physical Review Letters 84, 5496, 2000.Google Scholar
  14. 14. J.-P. Uzan, Reviews of Modern Physics 75, 403, 2003.Google Scholar
  15. 15. R. T. Birge. Probable values of the general physical constants (as of January 1, 1929). Physical Review Supplement 1, 1 1929.Google Scholar
  16. 16. http://www.bipm.fr/enus/3_SI/si_fig.htmlGoogle Scholar
  17. 17. R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Physical Review Letters 59, 26, 1987.Google Scholar
  18. 18. A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu. A preliminary measurement of h/m(Cs) with atom interferometry. In: P. Gill, editor, Proceedings of the 6th Symposium on Frequency Standards and Metrology, pages 193–212. World Scientific, Singapore, 2002.Google Scholar
  19. 19. P.J. Mohr, B.N. Taylor, Fundamental constants and the hydrogen atom, Lect. Notes Phys. 627, 145–156 (2001)Google Scholar
  20. 20. V. Kose, B. R. L. Siebert, and W. Wöger, Metrologia 40, 146, 2003.Google Scholar

Authors and Affiliations

  • Jeff Flowers
    • 1
  • Brian Petley
    • 1
  1. 1.National Physical Laboratory, TeddingtonUK

Personalised recommendations