Millisecond Pulsarsas Tools of Fundamental Physics

  • Michael Kramer
Part I Astrophysics
Part of the Lecture Notes in Physics book series (LNP, volume 648)

Abstract

A new era in fundamental physics began when pulsars were discovered in 1967. Soon it became clear that pulsars were useful tools for a wide variety of physical and astrophysical problems. Further applications became possible with the discovery of the first binary pulsar in 1974 and the discovery of millisecond pulsars in 1982. Ever since pulsars have been used as precise cosmic clocks, taking us beyond the weak-field limit of the solar-system in the study of theories of gravity. Their contribution is crucial as no test can be considered to be complete without probing the strong-field realm of gravitational physics by finding and timing pulsars. This is particularly highlighted by the discovery of the first double pulsar system in 2003. In this review, I will explain some of the most important applications of millisecond pulsar clocks in the study of gravity and fundamental constants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. C. M. Will, Living Rev. Relativity 4, 4. [Online article]: cited on 1 Oct 2003, http://www.livingreviews.org/lrr-2001-4 (2001)Google Scholar
  2. 2. S.G. Turyshev et al., 35 Years of Testing Relativistic Gravity: Where Do We Go from Here?, Lect. Notes Phys. 648, 311–330 (2004)Google Scholar
  3. 3. N. Wex, In: Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, eds C. Lämmerzahl, C. W. F. Everitt, & F. W. Hehl, (Springer, 2001)Google Scholar
  4. 4. I. H. Stairs, Living Rev. Relativity 6, 5. [Online article]: cited on 1 Oct 2003, http://www.livingreviews.org/lrr-2003-5 (2003)Google Scholar
  5. 5. D. R. Lorimer, Living Rev. Relativity 4, 5. [Online article]: cited on 1 Oct 2003, http://www.livingreviews.org/lrr-2001-5 (2001)Google Scholar
  6. 6. S. E. Thorsett & D. Chakrabarty, Ap. J. 512, 288 (1999)Google Scholar
  7. 7. J. R. Oppenheimer & G. Volkoff, Phys. Rev. 55, 374 (1939)Google Scholar
  8. 8. V. E. Zavlin and G. G. Pavlov, A&A 329, 583 (1998)Google Scholar
  9. 9. M. A. McLaughlin, I. H. Stairs, V. M. Kaspi et al., Ap. J. 591, L135 (2003)Google Scholar
  10. 10. G. F. Bignami, P. A. Caraveo, A. D. Luca & S. Mereghetti, Nature 423, 725 (2003)Google Scholar
  11. 11. T. H. Hankins, J. S. Kern, J. C. Weatherall & J. A. Eilek, Nature 422, 141 (2003)Google Scholar
  12. 12. M. Kramer, K. M. Xilouris, A. Jessner, et al., A&A, 322, 846 (1997)Google Scholar
  13. 13. A. G. Lyne, R. S. Pritchard & F. G. Smith, MNRAS 265, 1003 (1993)Google Scholar
  14. 14. M. Kramer, A. G. Lyne, G. Hobbs, et al., Ap.J. 593, L31 (2003)Google Scholar
  15. 15. M. D. Young, R. N. Manchester & S. Johnston, Nature 400, 848 (1999)Google Scholar
  16. 16. D. C. Backer, S. R. Kulkarni, C. Heiles, M. M. Davis & W. M.Goss, Nature 300, 615 (1982)Google Scholar
  17. 17. M. A. Alpar, A. F. Cheng, M. A. Ruderman & J. Shaham, Nature 300, 728 (1982)Google Scholar
  18. 18. V. M. Kaspi, J. H. Taylor & M. Ryba, Ap. J. 428, 713 (1994)Google Scholar
  19. 19. E. M. Standish, A&A 114, 297 (1982)Google Scholar
  20. 20. I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964)Google Scholar
  21. 21. D. C. Backer & R. W. Hellings, Ann. Rev. Astr. Ap. 24, 537 (1986)Google Scholar
  22. 22. E. S. Phinney, Philos. Trans. Roy. Soc. London A341, 39 (1992)Google Scholar
  23. 23. http://pulsar.princeton.edu/tempo/Google Scholar
  24. 24. http://www.jb.man.ac.uk/research/pulsar/observing/progs/progs.htmlGoogle Scholar
  25. 25. http://www.mpifr-bonn.mpg.de/div/pulsar/former/olegd/soft.htmlGoogle Scholar
  26. 26. K. Nordtvedt, Phys. Rev. 170, 1186 (1968)Google Scholar
  27. 27. N. Wex, In: Pulsar Astronomy - 2000 and Beyond, IAU Colloquium 177, eds M. Kramer, N. Wex & R. Wielebinski, R., ASP Conf. Series Vol. 202 (PASP, San Francisco 2000), p. 113Google Scholar
  28. 28. T. Damour & G. Schäfer, Phys. Rev. Lett. 66, 2549 (1991)Google Scholar
  29. 29. C. Lange, F. Camilo, N. Wex et al., MNRAS 326, 274 (2001)Google Scholar
  30. 30. C. M. Will, Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge 1993)Google Scholar
  31. 31. J. F. Bell, Ap. J. 462, 287 (1996)Google Scholar
  32. 32. Bell, J. F. & Damour, T., Class. Quantum Grav., 13, 3121 (1996)Google Scholar
  33. 33. C. M. Will, Ap. J. 393, L59 (1992)Google Scholar
  34. 34. T. Damour, G. W. Gibbons & J. H. Taylor, Phys. Rev. Lett. 61, 1151 (1988)Google Scholar
  35. 35. Z. Arzoumanian, PhD thesis, Princeton University (1995)Google Scholar
  36. 36. S. E. Thorsett, Phys. Rev. Lett. 77, 1432 (1996)Google Scholar
  37. 37. J. M. Weisberg & J. H. Taylor, In: Radio Pulsars, eds M. Bailes, D.J. Nice & S.E. Thorsett, ASP Conf. Series Vol. 302 (PASP, San Francisco 2003), p. 93Google Scholar
  38. 38. T. Damour & G. Esposito-Farèse, Phys. Rev. D53, 5541 (1996)Google Scholar
  39. 39. T. Damour & G. Esposito-Farèse, Phys. Rev. D58, 042001 (1998)Google Scholar
  40. 40. Esposito-Farèse, G. contribution to 10th Marcel Grossmann meeting, gr-qc/0402007 (2004)Google Scholar
  41. 41. I. H. Stairs, S. E. Thorsett, J. H. Taylor & A. Wolszczan, Ap. J. 581, 501 (2002)Google Scholar
  42. 42. T. Damour & R. Ruffini, Academie des Sciences Paris Comptes Rendus Ser. Scie. Math. 279, 971 (1974)Google Scholar
  43. 43. M. Kramer, Ap. J. 509, 856 (1998)Google Scholar
  44. 44. M. Kramer, In: The Ninth Marcel Grossmann Meeting, eds V.G. Gurzadyan, R.T. Jantzen & R. Ruffini (World Scientific, Singapore 2002) p. 219Google Scholar
  45. 45. R. N. Manchester, A. G. Lyne, F. Camilo, et al., MNRAS 328, 17 (2001)Google Scholar
  46. 46. V. M. Kaspi, A. G. Lyne, R. N. Manchester, et al., Ap. J. 543, 321 (2000)Google Scholar
  47. 47. Burgay, M., D’Amico, N., Possenti, et al., Nature, 426, 531 (2003)Google Scholar
  48. 48. Lyne, A. G., Burgay, M., Kramer, M., et al., Science, 303, 1153 (2004)Google Scholar
  49. 49. Damour, T. & Taylor, J. H., Phys. Rev. D, 45, 1840 (1992)Google Scholar
  50. 50. Barker, B. M. & O’Connell, R. F., Phys. Rev. D, 12, 329 (1975)Google Scholar
  51. 51. Wex, N., 1995, Class. Quantum Grav., 12, 983 (1995)Google Scholar
  52. 52. Damour, T. & Schäfer, G., Nuovo Cim., 101, 127 (1988)Google Scholar

Authors and Affiliations

  • Michael Kramer
    • 1
  1. 1.University of Manchester, Jodrell Bank Observatory, Cheshire SK11 9DLUK

Personalised recommendations