Oklo Constraint on the Time-Variabilityof the Fine-Structure Constant

  • Yasunori Fujii
Part IV Astrophysical and Geochemical Search
Part of the Lecture Notes in Physics book series (LNP, volume 648)


The Oklo phenomenon, natural fission reactors which had taken place in Gabon about 2 billion years ago, provides one of the most stringent constraints on the possible time-variability of the fine-structure constant α. We first review briefly what it is and how reliable it is in constraining α. We then compare the result with a more recent result on the nonzero change of α obtained from the observation of the QSO absorption lines. We suggest a possible way to make these results consistent with each other in terms of the behavior of a scalar field which is expected to be responsible for the acceleration of the universe.


Minimal Supersymmetric Standard Model Cosmological Solution Natural Reactor High Resonance Matter Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. See, for example, R. Naudet, Oklo: des réacteurs nucléaires fossiles, Collection CEA, Eyrolles, Paris, 1991Google Scholar
  2. 2. The Oklo Phenomenon, Proc. of a Symposium, Libreville, June, 1975 (IAEA, Vienna, 1975)Google Scholar
  3. 3. P.K. Kuroda, J. Chem. Phys. 25, 781, 1295 (1956)Google Scholar
  4. 4. A.I. Shlyakhter, Nature 264, 340 (1976)Google Scholar
  5. 5. A.I. Shlyakhter, ATOMKI Report A/1, unpublished (1983), physics/0307023Google Scholar
  6. 6. Y. Fujii, A. Iwamoto, T. Fukahori, T. Ohnuki, M. Nakagawa, H. Hidaka, Y. Oura and P. Möller, Nucl. Phys. B573, 377 (2000). See also, hep-ph/0205206Google Scholar
  7. 7. T. Damour and F.J. Dyson, Nucl. Phys. B480, 37 (1996)Google Scholar
  8. 8. K.A. Olive, M. Pospelov, Y.-Z. Qian, A. Coc, M. Cassé and E. Vangioni-Flam, Phys. Rev. D66, 045022 (2002)Google Scholar
  9. 9. M.T. Murphy, J.K. Webb, V.V. Flambaum, MNRAS 345, 609 (2003); astro-ph/0306483Google Scholar
  10. 10. M.T. Murphy et al., Constraining Variations in the Fine-Structure Constant, Quark Masses and the Strong Interaction, Lect. Notes Phys. 648, 131–150 (2004)Google Scholar
  11. 11. J.D. Barrow and J. Magueijo, Astrophys. J., 532, L87 (2000)Google Scholar
  12. 12. J.D. Barrow and C. O’Toole, astro-ph/9904116Google Scholar
  13. 13. C. Wetterich, Phys. Lett. B561, 10 (2003)Google Scholar
  14. 14. J.D. Bekenstein, Phys. Rev. D25, 1527 (1982): gr-qc/0208081Google Scholar
  15. 15. L. Anchordoqui and H. Goldberg, Phys. Rev. D 68, 083513 (2003)Google Scholar
  16. 16. C.L. Gardner, Phys. Rev. D 68, 043513 (2003)Google Scholar
  17. 17. A.G. Riess et al., Astgron. J. 116, 1009 (1998); S. Perlmutter et al., Nature 391, 51 (1998)Google Scholar
  18. 18. Y. Fujii, Phys. Rev. D26, 2580 (1982)Google Scholar
  19. 19. D. Dolgov, Proc. Nuffield Workshop, ed. G.W. Gibbons and S.T. Siklos, Cambridge University Press, 1982Google Scholar
  20. 20. Y. Fujii and K. Maeda, The scalar-tensor theory of gravitation, Cambridge University Press, 2003Google Scholar
  21. 21. Y. Fujii, Phys. Lett. B573, 39 (2003)Google Scholar
  22. 22. X. Calmet and H. Fritzsch, Eur. Phys. J. C24, 639 (2002)Google Scholar
  23. 23. P. Langacker, G. Segrè and M. Strassler, Phys. Lett. B528, 121 (2002)Google Scholar
  24. 24. K.A. Olive, M. Pospelov, Y.-Z. Qian, G. Manhès, E. Vangioni-Flam, A. Coc and M. Cassé, astro-ph/0309252Google Scholar
  25. 25. Y. Fujii and A. Iwamoto, Phys. Rev. Lett. 91, 261101 (2003)Google Scholar

Authors and Affiliations

  • Yasunori Fujii
    • 1
  1. 1.Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555Japan

Personalised recommendations